

Intro toCompilers

What is a compiler ? -> A
program that translates software written in one language into

another language.

-> Should improve the program in some way
-> EX : C

,
C ++ are both compiled

What is an interpreter ? -> A
program

that reads an executable program and produces the results of executing
that program

-> EX : Python ,
Scheme are both interpreted .

Is Java interpreted or compiled ? -> Both ! Kinda

-> Java is compiled into bytecode (code for the JVM)

-> The bytecode is then interpreted

-> Some bytecode may be compiled (just-in-time compilation)

What are the principles of compilation?
-

Compiler must preserve the meaning
of the input prog

-

Compiler must discernibly improve the input prog

What is the structure of a compiler ?

source Front ER

, Optimizer ERs Backend a targetprogram End
program

compiler

What does the Front End I -> Deals with the source code· Takes a stream of chars & converts into a stream of classified

component do ? code
.

-> INPUT :

source-language program
-> performs 3 types of tasks/operations :

1

Lexing (scanning) : stream y characters-> Stream
of words le .g.,removing whitespace

2)

parsing : is stream of words a "Sentence" in the source language ?
3)

Static semantic analysis : Is the sentence (statically) meaningful ?
-> OUTPUT : Intermediate representation (IM)

What does the Optimizer do ? -> INPUT : IR

-> Focuses on improving program efficiency . Multiple rewrite passes ; reducing code size

-> OUTPUT : Intermediate representation (IM)

What does the Backend Component do? - Deals with the target machine

-> INPUT : Intermediate representation (IM)

->Instruction Selector : turns IR into target machine instructions

->

Register allocator : Fit the finite register set given to you by target Machine
,
to the program

that you have

-> InstructionScheduler : reorder instructions for speed

- OUTPUT : target -

language program

I executes ↑
input executes

onze &What is the timing breakdown
I &

& ↳ & many times

for compiled languages ?
source
->

code I compiler & & executable
I

&

I I target machine

Y
I ↓
&

I

& ! output

Design I Compile
Time I Time I Runtime

What happens of ench stage?
-> Design Time : design & implementation of the compiler
-> Build Time :

using a compiler to compile the compiler
->

Compile Time : execute the compiler to translate source-language program to

target-machine code

-> Runtime : target-machine code executes

-> Just-in-Time Compiler (JIT) : a runtime compile-time
What is the timing breakdown input executes

I times
For interpreted languages ? I

↳ & many

source & Interpreten
code I

& target machine

I

↓
Y

& output
I

Design " Runtime
Time

So
, why study compilers ? -> Fundamental in computation

·

key drivers of performance

·

enable use of programming langs
-> Broad applications

* classic compilation (e . g. gue ,
rust) Dembedded langs Ce . g -, macros in excel

& scanning & parsing
(e .

g. HTML
,

SAT queries) & domain-specific langs
-> Fundamental in CS

·

computer organization/architecture , assembly programming ,

OS
, algorithms,

formal languages
-> Intrinsically interesting !

What will my compiler look · mini

S
Front End

& Back End RISC-V

like? program (Python) Abstract &
(python) assemblySynta

Tree

compiler

Timing for my compiler ? i
helloworld - mini

i
in put

W
&

&

urcompiler- py

:
/bin/python 3 " & RISC-V asm

(your laptop) CRISC-V Simulator)

!

Design Time, " Compile Time " Runtime

Front-End : Scanners Ch .2

RECALL : Whal are

the3MinSee al
1. Lexical Analysis (Scanning)

:

tasks of theCompiler -> concerned with microsyntax

Tmaps
: Stream of chars he stream of ora

↳contawithgreenan e annotated sentences

3.
Semantic Elaboration

-> checks that sentences are meaningful
Example? -> Say that source lang is English .

12

Compilers arp fun" -error caught by scanner bla "arp" isn't a valid word.

↳ Grammatically incorrect ; caught by parser

· 1K Fun" -> All legal words ; NOT caught by scanner"Compilere wa

↳ Grammatically correct ; Not caught by parserI "Compilers areFun" -> All Legal words ; NOT caught by scanner

↑ Semantically non-meaningful : caught by semantic analysis

What does the Scanner do ? - The only part of the compiler that reads every character

-> Maps streams of chars to streams of tokens
,

·

Token : <Syntactic Category ,
lexeme >

·
e .g.: INPUT : "Compilers are fun

.

"

Stream of tokens

OUTPUT :

S
< NOUN

, "Compilers") ,
JVERB

,
"are")

,
CADJ

,
"Fun" < ENDMARK

,

"
."L

-> Finds microsyntax errors : uncrecognized lexemes
, spelling mistakes

· microsyntax : Specifies correct spelling of all words in the lang.
What is the difference between Scanning : identifies & classifies words recognizing words in the lang.

Scanning and Parsing 1 ->Parsing : identifies sentences

-

grammer : Specifies all legal sentences in the language

Why separate the two ? greater efficiency ; parsing is harder than scanning ; better to give the parser

only well-formed tokens

-> Scannerless pursing - 2 .g . combining the 2-is possible.

-> Scanner Construction is based on Finite Automata

What is the plan for Design Time Build Time Build Time Runtime

lexical analysis Le .

g .

· specify microsyntax· Convert RE · Generate code
· code analyzes input to produce

the compiler's plant ? using REs to FA
to implement FA

<category , lexyme > pairs

-

RecognizingWords : Finite Automata -

RECALL : What is a DFA ? A deterministic finite automaton (DFA) is a 5-tuple
->

(S
,
E

,
S

, so ,
Sa) ,

where

1. S is a finite set
,

called the states

2 . S is a finite set
,

called the alphabet
· represents the "inputalphabet"

· indicates the allowed in put symbols

· for Ex
,

with binary string inputs ,
E = 50,

13

4. SES is the start state
8

5. SaGS is the set of accept states
.

-> A DFA accepts < string iff :

·

starting in so& consuming each char in the string according
to the transition function

,
leaves it in an accepting state.

-> We regard Recognizers as DFAsI
3 . S : Sx2-S is the transition function

se = error

Example of a Recognizer ? -> Recognizing the word "not" :

C = next char Recognizer
If c = 'n' then E

E ⑬State
Ca next char

-D b
if c = '0' then [-> Z

-Se
&->

&

So
C + next char &

g

if c = X al statesharan implicitedfast

then return <NOT
, "not")

2 se reporterror

3 else report error

3 else report error

Code

-> [X2 : Recognizing "not" or "new"

E.
⑰Si&

So S& ·

How would nice theyou relog ⑤
2...5 &20

....

infinite set of integers ? D ·
What are some key terms -> language : set of words accepted by an FA . Countable set of strings over a fixed

Finite Automata (FA)s ? -LCA) : lang. recognized by an F
. A. D

-> An FA recognizes exactly one language
-> the transition diagram y FA specifies how to Spell every word in LCFA)

- 2 languages cannot be recognized by the same FA or the same RE.

- Specifying Languages : Regular Expressions-

Why use REs ? -> FAs are precise but not concise . Res are precise & concise

-> Set y langs that can be recognized by an FA = "by an RE

RECALL : What are therries For +3 is an RE
,
and ((d) = 523 (empty string)

REs ? -> if a C
,
then a is an RE and ((a) = Ea3

RE Syntax ?
-> Let X = Ea

,
b 3 and Y = Ec

,
&3

2. UNION : X 1y = x Vy = Ea
, b ,

c
,
d3

2. CONCATINATION : XOY = Exy/xEX and yeY3 = Gac
,
ad

,
be

,
ba3

& facts regarding

I
alphabet

cat2 =

Keywords (if I While / then I For ...

3.
KLEENECLOSURE : X* = EX1Xz.... Y /K = 0 and each X

,
EX3

= 95
,

a
,
b

,

ab
,

ba
,
aab, abba

,
ba

,
... 3

What is some syntactic sugar
-> Positive closure : r

+ (equivalent to r) · Specifies "I or more Us"

For REs ? ->Co... 9) = 0111213181516171819

+ [a ...]] = alb (c 1 ... 12

-> complement : vc = G15c3

What are the steps for 1. Build REs for each category in the programming language.

building a Scanner ? + e .

g .,
cat] = integers (like [0 ... 9) or suthn)

eaty = identifiers (a-21A-2((9-21A-210-9)
*

2. Combine into single RE (Union) (ct1/cat21 Cata (

3 .

Convert RE < NFA using Thompson's Construction (1)

J

Convert NFA CDFA using subset construction (2)

5.
DFA minimization : DFA s DFA (3)

6 -

Scanner Generator : DFA I code
(4)

· Skeleton scanner + generated table

· generated scanner

-

Converting REs to Finite Automata (1)

RECALL : What is an NFA ?
-> in nondeterministic Finite automatoes (NFAs)

,
several choices

may exist for the next state at any point .

* nondeterministic finite automaton is a 5-tuple
(S

,
E

,
S

, sopa) ,
where

1. S is a finite set of states

2 . S is a finite alphabet

3 . S : Sx & < P(S) is the transition function
4.

So ES is the start state

5. SAGS is the set of accept states
.

-> S : Sx & < PCS)
,

where S takes an input of the Cartesian set of

all possible combos of States (5) and input symbols plus the empty string (Ga),
and produces the power set of S

,
ala the set of all possible next states.

- P(Q) = power set of Q = collection of all possible subsets Of Q
.

·

ex = Q = 51
,
2 3

...
P(Q) = 553

,
513

,
924

,
91

,233

S do NFAs compute ? -> When the NFA arrives at a state with multiple ways to proceed (like if

we were at g and the next input symbol is a I
,
we can either stay in gy or

more to 92) ,
the machine splits into multiple copies of itself and

then follows all of the possibilities in parallel.

· each copy of the machine takes one of the possible paths & then continues on

reading the input

·

Every time there are choices
,
the machine "splits" again

-> NFAs are like a parallel computation where multiple independent

Computation models ?

I
an accepting state for the input string

" threads" can becoming concurrently .

What happens when the NFA arrives -> Similar : without before reading any further input ,
the machine splits into

on a state that has E on an exit at least two but possibly more copies - one that stays at the current

arrow ? state
,
and one following each of the exiting E-labeled arrows.

· For ex
,
when it arrives at g and the next symbol is a 0

, Ny splits

into 2 copies befor reading the next symbol - one that stays at 92 and

one that advances to 23

What are the I types NFA - Omniscient NFA : at each nordeterministic choice
,

Follow the transition that leads toof

->

Cloning NFA : the one described above (from COMPASS (

What is Thompson's -> Method to generate an NFA From an RE

Construction ? -> For each symbol in & and each B
. E · operator,

there is an NFA template.
10 Join templates together to form larger REs

· Join withE transitions

·

Join in precedence order

2 Adjust set of accepting states

What is the precedence order ? 1)
, &, concatenation

,
union ->left-associative

What are the templates ?

Other properties ? -> Single start & Single accepting state

-> No transitions return to start state

-> No transitions leave accepting state

-> Each state has max 2 transitions per symbol ; one exiting and one entering
-> Each state has max ↓ -transitions ; Lexiting & Centering

Example of using Thompson's -> build NFA For a (blc)
↑

Construction ? 88 E &Ja
->⑯ -> E·- E

Ss
Sy -- J

- E

· eySS
&

E -
20 - " ⑧& ⑮↑ -> E Sa

-

T

E

(waitthismightbewrougversion from textbook on nex pa

Why use Thompson's - e .g .,
for a lbic) : -Fl

construction if we can just make - ANS : bin it can't be auto-generated ; we had to come up with it in our brains.

a minimal DFA? -> Thompsons Construction process can be coded/automated

Subset Construction : NFA SDFA (2)

What do we do in this step!
-> Convert the NFA into a DFA

-> Each State in DFA = Set of states in NFA

-> Transitions in DFA represent the possible transitions from the set of

NFA states
.

-> subset construction : the aly to convert NFAeDFA

How do we execute subset 28
Start state Go in DFA= Set of NFA states including :

construction? · nO
,
NFA start State

· 9 = So

28
Given State & in DFA :

* For each NFA state & in g ,
for each char c : Follow all possible

NFA transitions
, including E

The set of reachable states from doingthis new g

a
why

not
including I -3

g

· all states reachable from no by Following E

-

add q and transition to DFA

38
iterate step 2 until no more states are added

accepting states in DFA : contains an NFA accepting state

- So basically
,

make a table & start listing out states .

a E E
-0-> EX : NFA For albles :

es
, -

↓ Ea 8O iO
- Ss E E

Set of reachable states
Sy Y

-
,

D

DFA State NFA

For char
...

&
M E

E
③ E

Sz

↑ P

Name States a b [

Da 96 [503551
,

52
,

59
,
33

,

- none- -none -

2
in

the
sex

o

& this becomes our

11
next stateat S4

,
96

,
3

S L

"b" in
now

for a

92
& S1

,
52

,
59

,
33

, -> none = [S3
,
59

,
55

,
36, 233

,
59

,
55

,S4
,
96

,
3

55
, 583 36

,
97

,
383

[S3
,
59

,
55

,
36,

92 55
, 583

-> none -

92 93
233

,
59

,
55

,

93 36 >7
,
583

- none - 9
z

E
3

L

if you write out the states
,

it ends up being = to set of

NFA states listed for 92 !

What is the pseudocode for
-> When aly hults

,
each q; Q corresponds to a state dieD in the DFA

subset construction?
-> Aly builds elements of Q by Following the transitions that the NFA can make on a

given input.

-> each element of Q is a subset of N (the set of states in the NFA)

90 = Follow-epsilon ([sO3)

Q = [93

work list = 5903

While (Work List ! = [3) :

each a represents a valid

workList . remove (g) config of the original NFA

for char in E:

helper function that applies the NFA's
↓mp = Follow-epsilon (delta (g ,

c)

if tmp ! = 23 : -
transition function to each element of

if tmp not in Q :

E ,
and returns VGo,c

Q. append (Etmp3)

Work List append (Etmp3

↑ [q,
charj = trup

What is follow-epsilon ? -> helper function that takes a set S of NFA states.Then
,
for each Statesies

,

it adds to

any NFA states reachable by following one or more E-transitions from Si .
It returns

the "updated" version of S
,

with all of those states added to it.

What type of algorithm is this ?
-

Fixed-point computation : guaranteed to terminate

· Monotonic construction of Finite set (Q)

· exists a finite of possible states to add .

·

Halls when it stops adding to the set.

How do we construct the DFA ~ We now have our set of DFA states &
,
and their transitions :

NFA
after generatingSubsets &

DrA State
States a b [

DFA States ? 96 [503 92
- none-

-none -

92
& S1

,
52

,
59

,
33

,

38
,
96

,
3 I -> none = 92 93

92
233

,
59

,
55

,
36

,
55

, 383
-> none - 92 93

93
233

,
39

,
35

,
36

,
37

,
383

-> none - 9
z E

3

-> go becomes start state ; any 9 :
EQ who contains a state

En ; EN (NFA) /n = accepting states
,
becomes an accepting state.

b 2
b

90"99
C b4La

3930

DFA Minimization : Hopcroft's Algorithm
(3)

What is a partition of a set ? - For a set Q : a collection of subsets of Q which are disjoint &

whose union gives you back the original set. Basically dividing elements of

Qup into groups.
What is Hopcroft's Alg -> Idea : defect When 2 states produce the same behavior on any inputstring

10
Build a partition of DFA States

,

P = Sp
, P2 .. --Pn3 S . t

.
:

* For all c in S : if Xa
, Xy in Ps ,

S(Xa
,

4) = Xi ,
and

8(X
,

c) =

Xi ,
then Xi

, X] must be in the same partition .

(basically
,

if P2 has a and b
,

and chars transitions a & b to c & d,

respectively - THEN
,

C and d must be in the same partition .

~ accepting state
2

Start with the initial partition Po : [Sa
,
ES-533

Split partitions to satisfy the requirements

5) Iterate until regs satisfied. Iterate for eachcE&
58

Create minimized DFA with I state for each partition group.

Example? -> Final reg:

& 2 DFA states a
,

b EPs have the same behavior in response to all input chars.

· Property holds for every pgEP ,
every pair of states a

,beps ,
and every

input Char c.

PX
· When

examining a partition" a
,
b

,
24

,
if on a given char

,
all states transition to

- NonSatinside Ax thestabs
can

remaininthisais

So & Si-jD

orithm ?

I 38

a

So

transition to states in the partion

Step Current Partition char Set action

8 5950
,
31

, 32
,
363

,
933

,
5933 - & -

5950
,
31

, 32
,
363

,
933

,
5933 C [So ,

S1
,
52

,
543 Split off [2,63

L

why? because on char "e"
,

S2 & 54 both

& 33
,
553

.

So they must be in the same

partition.

2932
, 313

,

253
,
593

,
350 ,

31338 [SO
,
s13 Split off GSO3

& [S2
, 383

,
933 , 593

,
2303

,
23133

-> Minimized DFA :

->

- Scanner Generator : Generate ScannerFrom DFA-

How do we generate a scanner
+ Skeleton Scanner + DFA tables

from a DFA ? -> Direct-coded Scanner

-> Handwritten Scanner

What is a Skeleton Scanner? -> Scanner generator : RE-DFA
,

DFA -> table

-> Skeleton Scanner interprets the tables to simulate the DFA

-> Generated Scanner uses the sameSkeleton For every RE

Tables encode specifics of given RE

Example ? -> Skeleton Scanner : -> Table :

char = next-char

While (Char = EOF) : SO SI s se

State = S (state
,
char) S] sOSI Se

Char = next
- char Se Se Se Se

if (state = Final State) :

/report successI
->

State = So S a b other

21se :

report Failure

What is a Direct-coded
-> Scanner Generator : RE-DFA

,
DFA - Code

Scanner ? - Transitions are compiled into conditional logic
- Generated Scanner is different for each RE

-> Generated Code encodes specifics of RE

-> Low overhead per char

High Level : How is the -> Build Res for each category in programming language

scanner generated ?
-> Combine into a single RE Lunion(

Cat1 12 2+2 / cat]

· Exi cat 2 = (if(while/forlthen) catz= (a-2 /A-210-97
*

-> Use associated DFA to build scanner

Recap : How does theScanner
+ heads enough input to recognize a word-DFAs read all the input

Work ?
-> Reads until it reaches state &

,
next char ?

·if S(s ,
cl = se and s in SA ...

the scanner found a word

current
· else , scanner backs up until it finds an accepting state or it exhausts the lexeme.

-> Returns a token Plexeme , category >

Summary/Recap? -> FAs are good for recognizing words

-> REs are good for specifying the set of words to recognize

What is an Abstract - Represents the structure of a language ,
as a tree

Syntax Tree (AST)?

expression

I #E
A* Y

N t

-> the structure that shows up here
,is given by your parser.

->

parser generates a parsetree
,
which has tokens &

stof & isn't the same as
an AST

-> Lab 0 : Visit AST& putty print an expension

he Mini CompI iler : Front End

source Front ER

, Optimizer ERs Backend - targetramprog End
program

compiler
W Abstract Syntax

-> Scanning : Mini . go grammar I generated parse tree (ANTLR

- Parsing :

generated parse tree 9 AST

What is an Abstract SyntuX
- * graph that describes the structure of your input source code -

Tree? - AST design is closely linked with that of a compiler

Example?
->

construct the syntax tree for 5 + (803) $ S

S

=
E

E $
:: = + (0p#)9 M

T:: = (E) I num

T Opt
T

Op :== + 14 - 3
S II

Minilanguage Trees (ASTs)

J

↑
M

-
3

("i: = "means" is defined as") Op T

->Precedence rules Leg- order of ups) must be enforced for the correct AST

to be generated.

What is the Visitor Model/ -> We need to be able to traverse our ASTS

Design Pattern ? -> Mini To AST Visitor handles construction of the AST
.

It builds AST from

-

the parse tree
.

Subsequent passes implement the Astrisitor to traverse the AST constructed.

What does AST Visitor provide? -> abstract base classes with visit methodsPor all AST mode types.

-> Establishes a concrete visitor pattern interface (All visitore must implement

Front End : Parsers Ch .
3

RECAP : Where are we?
1 . Lexical

~

Analysis (scanning):

concerned with microsyntax

->
maps : stream of chars whe stream of words

~ Parser - & Front

-> concerned with grammar
->

maps :Stream of words I annotated sentences

-> looks at every word

3.
Semantic Elaboration

-> checks that sentences are meaningful
What does the parser do? -> Given an input of tokens <category ,

lexemes
, maps it into a sentence.

-> EX : intx ; 9 <type ,
"int") < ID

,
"X" >

What is parsing?
-> Given a stream of words

,
s

,
and a grammar

G
,

find a derivation in G

that produces S.

Goal : recognize syntactically valid sentences in the language.

1. Specify syntax of the lang, Using grammar G.I -> 2- Test membership in L(G)

End

What are the 2 Methods For -> Top-Down parsing : Using G
, try to recreate the sentence S

.
Start with C.

pursing?
· begin with root mode & build down

· root node grammar's start symbol

->

Bottom-Up parsing : Starting with s
, identify rules to verify that it Fits in G.

· begin with lef nodes & build up

· leaf nodes string of terminals

How do we specify the syntax
-> Context Free Grammars ! COMPASS !!

of a

lang? A context-freegrammar is a N-tuple (V
,

T
,

P
,
5)

,
where

RECALL : What is a CFG ? 1. V is a finite set of syntactic variables
,
aka nonterminals

2. T is a finite set
, disjoint from V

,
called the terminals,

·

disjoint= no common elements between V and E
.
T = E

3. P is a finite set of rules
,

with each rule being : a variable

and a string of variables & terminals
,

and

4. SEV is the start variable .

-> The language of a given CFG = set of sentences that can be derived from S.

Example? -> Grammar G2 : S saSb v+Variables : ES4

Rule ISS * Terminals = Ea , b
,

23

1E
So Start variable = S

-> Ex stringsin G2 : E
,

abb
,

ausbb
,

gaasbbb
,

asse ,...

RECALL: What is a derivation ? -> A sequence of applications of rules to transform the start symbol in the

grammar ,
into a sentence in the language.

What is the difference -> Regular Languages : Le . g .,
a*11

between Context - Free · cannot count to an unbounded number

& Regular languages ?
·

recognized by FAS

->CF Languages : Le . g .,
any")

·

can count
,
but cannot recognize context

·

recognized by nondeterministic PDAs

-> (set of all Reg . Langs) & (Set y all <Flangs)

What are the key components -> STEPS to derive :

of a derivation?
Start -> V + 5 + 02 ...

-

Un..

-

Un -sentence

1)
select a non-terminal At Vi

2) Use rule A+9 to expand A to get Vi + 1 Creplace A with B)

-> of U. contains only terminal Symbols ,
it is a sentence in LLG)

-> If Vi contains 1 or more non-terminals
,

it is a sentential form.

-> Parsing = Finding a derivation for asentence

What is a Sentential Form? -> A sequence of symbols that occurs at one step in a valid derivation.

What is a parse tree ?
-> A diagram that illustrates how a string gets generated. Alternative to derivations

,

2- g. another way to represent a sentence

Example? ->From G2 on prev page ... Gree for string
cas be

--
3

a ⑤
[54a

*
E*

What is an Ambigous grammar?
- A

grammar
that contains at least one sentence which can be derived in multiple

ways via multiple parse trees .

· If the same string can be made from 2 diff parse trees
,

the
grammar

is ambigous
· If same string can bemade from 2 diff derivations

,
doesn't mean anything

Formal definition ? -> A string W is derived ambiguously in CFG G if it has 2 or more leftmost derivations.

-> A grammar G is ambiguous if it generates some string ambiguously.

Example of an Ambiguouse Grammar G2 : Start if Exprthen Start

Grammar ? 1 if Expr then Strut else Stat

1 Other

-> Ex :

deriving sentences : if Expr ,

then if Expre then Other
,

else Other

-> PARSE TREE 1 : Stmt

M
if Expr

,
then

Str+

X-I-Strt
if expre metstart else

I I

Other
,

Other
2

-> PARSE TRS) 2 (Start with Rule 2) :

Start

&-S-> tut
Thenif Expr
-

stat else

/ "othe
eif Expr

, then

I

other
,

What is the difference between Derivations : capture the order in which ruses are expanded ; I diff derivations

Parse Trees & Derivations ? may produce the same parse tree

-> Parse Trees : capture the structure and meaning of the sentence

· For ambiguity ,
we are concerned with structurea meaning

-> To focus on parse trees
,
We fix the derivation order

What are the derivation orders? - Leftmost Derivation : replace the leftmost variable at each step

· A left-setential form occurs in a leftmost derivation

->

Rightmost Derivation : replace the rightmost variable at each step

· A right-setential form occurs in a leftmost derivation

What is an unambiguous grammar ?
- Only one possible parse tree (regardless of derivation order (

-> If derivation order is fixed
,

there should only be one possible derivation.

-> Ambigous grammar Gs
,
and generating the expression a + a & a :

Goal GoalExample of an ambiguous vs Goal - Expr ↑ ExprExpr

unambiguous expression ? Expr - Expr + Expr ↑ OR ↑

Expr t Expr Expr & Expr
1 Expr Expr

& S y

f N Nexpr a

↑ (Expr) a Expr Expr Expr ↓

ju -

aaa a

Va

CTD next page

Example of an ambiguous vs
-> Unambigous grammar Go : a + a & a (a + a)a

Goal Goal

unambiguous expression ? Goal -> Expr Expe Expr
IExpr- > Expr + Term STerm Term

Expr /Factor
↑ Term I Factor Term *

I ↑
Term

I I I Factor a

Term -> Term * Factor
Factor

Factor U iI
↑ Factor I

a X
a

-
TermExpr +

1Factor - (Expr) &

Term Factor
I

ra Factor a
I

a
-> Gy preserves PEMDAs/operation order unambigously

What is semantic ambiguity ? -> When ambiguity in the grammar reflects true ambiguity in the language (e . g ., overloading
-> EX : Fortran Grammar : Term -o name

I Call

1 ArrayRef

Call -> name (Exprhist)

ArrayRef -> name (ExprList)

· Given a = F(17)
... we don't know whether this is a call to function f

, or a reference to

ellement 17 of
array f.

How do we handle semantica solve outside the grammar
:

ambiguity ? · Use declaration info to return diff categories from the scanner

·Parse an imprecise Grammar & fix it dring type cheaking.
->

change language to be unambiguous
·

e . g., using different syntax for array refs
,
like []

- In Summary :

· handle language ambiguity through type information

· handle grammar ambiguity by rewriting the grammar.

Final notes on ambiguity ?
-> The grammar for a programming lang - should be unambiguous.

->
some ambiguous grammars can be rewritten to be ambigous & still capture the same language.

-> But some langs are inherentlyembigrous. For ex
,

Eabic" li = j Orj = 13

-> A CFG G is ambiguous if
,
for some sentence l in 126) :

· it can produce more than one leftmost derivation for I

·

it can produce more than one rightmost derivation for I

·

it can produce more than one parse tree For 1.

-> In an unambiguous grammar ,
the leftmost & rightmost derivations may differ

.

But
, they must have the same parse tree.

- Precedence-

How do
you add precedence to

2
Decide how many levels of precedence are needed(e .g .

PEMDAS)

a grammar ?
Create a Monterminal (NT) for each level

3 .

Make higher precedence operators go through the productions for

lower-precedence operators

-> EX : 21
, +, -

,

9
,
and I :

· Level 1 = 1)

·

Level 3 = +, -

precedence Expr - Expr + Term

↓ Expr-Term

I Term

&

Term -> Term & Factor

1 Term Factor

Example grammar implementing

I
2-

Goal - Expr

· Level 2 = /

1 Factor

Factor -> (Expr)

I num

I name

Final note on CFGs ? -> the language = the set of strings
- The grammar :

· defines the set of strings
· encodes info about the structure

- I grammars may yield the same language

·With
or wo ambiguity

with different heirarchical structure

I

- Classes of CFGs -

How can we classify CFGs ? -based on the difficulty of parsing their
grammars.

->

Regular
LL(1)

LR(1) LAI)

LFGs)
Unambiguous

What are the classifications? - Regular (RG) : CFGs that
generate regular langs

I

equivalent to REs (encode langs recognizable by DFAs)

*

Primary use in compiler construction = for specifying scanners

-> Arbitrary LFGs : require more time to parse than the more restricted (R(I) or (L)

grammars (For ex
,

O(n))) .

· A lang is context free if it can be recognized by an NPDA

-> LRL1) grammars :

· able to be parsed bottom-up ,
in a linear L-to-R scan

, looking at most oneI one

Arbitrary Context - Free

Word ahead of the current in put symbol

5

Alanguage is LR(K) if it can be recognized by a DPDA

· LR(K) and LR(1) grammars can express the same set of langs.

& L R(1)

& 5
lookahead of E sym

Scan input

left-to-right rightmost derivation

-> LL (1) grammars
:

I
· able to be parsed top-down, in a linear (-to-R scan

, looking at most one

Word ahead of the current in put symbol

J

can be parsed w/ either a hand-coded recursive-descent parser ,
or a generated

·

Many programming langs can be expressed in an 1211) grammar.

· 12 12)

↓ I Glookahend of 1 symbol
scan input construct a leftmost derivationleft-to-

-> Almost all programming lang. Constructs can be expressed in LRLI)
,
and often (L2)

Form
.

I

Top-Down Parsing
What does the pseudocode -> RECAL : Top-down parsing = try to recreate sentence &

using
G

For a top-down parser look rook = mode for start symbol S (let NT = Nonterminal aka

like ? Focus = root symbol (not in &1)

Stack. Push (null) push null onto the stack

Word = NextWord()

while (true) :

if (Focus is NTS :

pick rule to expand Focus
,
A+ B , B2B3 - - -on

build nodes for B , B2By---en as children of focus

push B , Bn-18n-z- - - Be onto the stack

Focus = ByIJelse if (word matches Focus) :

word = NextWord()

Focus = stack-pop() pop value off of stack

&Ke if (word == eof && Focus == Drll) :

accept input

return root

else :

·disaopenodea or

What is the "lower Fringe" ? -> In a tree : it = a sentential form in the table.

What is the Focus ? -> The mode in a free that is working to expand

What is the lookahead symbol ? - The next word in the string to match.

What are the requirements for a - Not left recursive : left recursion leads to infinite expansions

grammar to be Top-Down parsable? · transform
grammar to be right recursive

- Backtrack-free Jaka predictive OR (L21))

· backtracking is expensive

· transform grammar to be predictive

·

not all languages have an (L21) grammar

What is the Focus symbol ?
-> in a top-down parser , you keep a stack of symbols you still need to match/expand.

-> Focus symbol : the symbol at the point you're about to act on
.

· If its terminal : try to match it with the next input token (the lookhead)

· It. its nonterminal : expand it using one of its productions

- Left Recursion -

What is a left-recursive grammar ?
7

a rule in a CFG is left-recursive if the 1st symbol on its right-hand side is the

symbol on its left-hand side, or can derive that symbol.

-> EX : Fee - Fee a
· Fee is on

a -> B · B can be used to derive a

left-hand B + y
1 B side

r - aS

Direct Left Recursion Indirect Left Recursion

-> A CFG is left-recursive if
, I

For someAt NT and BECTUNT
,

A-
+

AB

mal

How do we eliminate -> Transform grammar from left to right-recursive
:

left-recursion ? -> Naive reweiting changes the associativity

What are the steps?
18 Forward substitution : change indirect (R- direct LR

25
Transformation : change direct (R & RR

... assumes that the grammar has

no cycles & no E-productions

Example? expression grammar G: Goal -> Expr

left-recursive rule : 1st Expr - Expr + Term
-

S ↓ Expr-Term
Symbol on left ----

I Term

R - recursive rules for G: Ferm -> Term & FactorD- -↑ 1 E

Symbol on right (Expr) = S

I name

&
Expr 1 Term Factor

-> Term Expr 1 Factor

Expr - + Term Expr Factor + (Expr)

1 - Term Expr I num

Term -> Factor Term' & by moving recursion to right-side ,
in finite loop

TransformedTerm' - X Factor Term' is avoided
:

Re

as Term Expr
1 - Factor Term'

↳ Term + Term Expr
19

↓ Term + Term-Term Expr

-> why? Because left-recursive productions don't5 Term + Term-Term

generate a leading terminal symbol .

What do we have to watch out for > Preserving Associativity : eliminating left recursion must maintain associativity.

when making a grammar
:Converting left-recursive G : Expre Expr-name I name into

right-recursive? Gz i Expr-> name- Expri name would be a naive attempt.

- Predictive Parsing -

What is backtracking 1 - When the parser expands the lower Fringe with the wrong production ,eventually encounters

e mismatch between that fringe& the parse tree's leaves Luke the terminals/string y the

sentence itself)
,

and then has to undo all of the actions that built the
wrong fringe.

And try other productions.

-Backtracking - expanding , retracting ,
I re-expanding the fringe-wastes time & effort

.

How do we make a parser -> A top-down parser may choose the wrong production & need to backtrack

backtrack-bree? -> Bettor : look ahead in the input to pick the right production

-> In general ,
an arbitrarily large amount of look-ahead may be needed

A

Look- ahead handled by Locke-Younger,
Kasumi

,
or Earley's algorithms

What is the effect of using ->Large subclasses of CFGs can be parsed with limited lookahead

-> When parser goes to select next rule (in trying to recreate sentence)
,
it can consider both

the Focus symbol & the next in put (lookahead) symbol ,

look a head? I ·2 . g-, (L (1) & LR(1) grammars .

Most prog , lang constructs fall in these subclasses
.

-> w/
One-symbol lookhead

, parser can disambiguate all of the choices that crise in

parsing the right-recursive expression grammar.

What is predictive parsing?
-> Given A-alB and the next token in the stream

,
the parser can correctly choose

between a and B

-> Additional definitions needed: FIRST sets
,
FOLLOW sets

-> Backtrack-free grammar : Predictive grammar .

RECALL:
What is a FIRST set ? -> Let & = some RMS symbol in grammar

G
. ↑ = terminals : & Calphabet)

-> FIRST(@) = the set of tokens that appear as the first symbol in some string that

derives From O : S
· First : T UNT V Ea

, e083 - PowerSet (TV55
,
e0f3) Goal -> Expr

· X- FIRST (a) iff a =Xy ,
for some Y Expr-> TermExpr'

- For every terminal B ,
FIRST (B) = [B3 . e . g.,

= Enum3 Expr'e + Term Expr

Example of FIRST sets? -> Consider grammar G2 :
1 - Term Expr

1. Compute FIRST sets For terminal Symbols
1 E

-
Bum , name

FIRST(num)

JFIRST(Expr)
=&C ,

name
,
moma

21st
Term -> Factor Term'

·

Expr goes to Term Expr
.
Term goes to Factor Term! Term' - X Factor Term

1 - Factor Term'
Factor

goes to (Expr)

FIRST(Expr = 2 +
,

-

,

93 19

FIRST (Term) = EC ,
num

,
name 3 Factor -> (Expr>

2. For each production *-> B , compute FIRST (B)
I num

3. Iterate until a fixed point is reached.
I name

1 Inputs & lookheads listed at each

Example to understand this grammar : S - <195b step are the ones at the END of step)

behind predictive ((L2117
an the parser has string aacbb that it is trying to"recreate"

parsing with FIRST sets START

Stack (topmost = last int Input = aac bb$

5 -
lookahead = a

S

Build the (((1) FIRST table : For each production A-
,
compute FIRST(@) :

or Rule No
.

FIRST (a)

C 2 424

aS b 2 [a3

Focus symbol : top of stack = Stackpop() = S
... nunterminal .

Find the production S-X S .
t

. a EFIRST (*) : Parser checks lookup

table
,
and now knows that it should pursure Rule 2

,
NOT Rule 1.

Pop S ; push RHS asb in revese so that leftmost a ends up on top :

stack. push (b) ; stack. push (S) ; stack
- push (a) ;

Stack
Input : aa < bb $

$

A lookahead = a· Symbol = Stack - pops) = a ... terminal .

S

Since focus symbol is terminal
,

match it with lookahead a

Pop a ; advance in put

Stack
Input: a < by $

$

S lookahead = a

cus Symbol = S ... nonterminal
,

Lookahead = a so choose Rule 2.

↑op S
,

push ask in reverse (same as step 1

Stack
Input : a a b b $

$

:
lookahead = a

symbol = a ... Same as Step 2 . Pop a
b matches lookhead.

Stack Input = a < bb$
$

lookahead = C

s
Focus symbol : S

.
Parser checks lookup table & chooses Rule 1 ! S + C

-> Pop S and push RHS c to stack

Stack
Input = c b b $

i lookahead = C

6 .

Focus symbol = 2 (terminal)
.

Matan as lookahead
. Pop 2 & advance in put .

Stack
Input : bb $

$

b lookahead = b

b

2. Focus symbol = b (terminal)
.

Matan as lookahead
. Pope & advance in put .

Stack
Input : b $

$

b lookahead = b

8. Focus symbol = b (terminal)
.

Matan as lookahead
. Pop b & advance in put .

Stack
Input : b $

$

lookahead = &

-> All done ! With no backtracking
What is the predictive/(L(1) -> If A-- @ and A -B both appear in the grammar,

property? then FIRST (aI FIRST (B) = 0

· Allows parser to make correct choice with single look-ahead

token

·

Does not account for e-productions

What are E-productions ? - Rules that expand to E
,

e . g .

d + a.

If A-clB and EEFIRST(a)
,

+ 2x : A - al ~ Apply a When the look-ahead symbol

how should the parser choose
a > Cd /9

appears in no other production's FIRST sets

which rule to apply?
FIRST(a) = Ec

,
27 -> FOLLOW Sets are needed·

FIRST(A) = Sc
,

23

What is a FOLLOW set? -> FOLLOW : NT -> PowerSet (TU Seop3)

-> For a Monterminal &
,
FOLLOW (a) is the set of terminal symbols that

can appear immediately after a in some sentential form.

- FOLLOW (d) = set of all words that can occur to the immediate right of a string
derived from &

- Purpose : parser needs to know which words can appear as the leading
Symbol after a valid application of a role .

How does the parser compute 1 .

For the topmost role (ex : Goal + Expr) : Set FOLLOW (Gall = Geod

Follow sets ? 2.
For each NT

,

if BiBin, appears in the RHS
,

then FOLLOW (Bi) contains

FIRST (Bi +,
]

3.
Iterate until a fixed point is reached .

-> Parser utilizes pre-calculated lookup table of all FIRST sets
.

What is the pseudocode for for each AENT :

computing
Follow sets ? FOLLow(A) = 0

S = Start symbol-
FOLLow (5) = GeoF3

While (FOLLOW sets are still changing) :

For each peP of the form A+ B
, B2... Bk :

TRAILER= FOLLOW (A)

For i = 1
,
1-1, ... 2: laka from right-to-left of the RHS of a production (

if Bi ENT :

FOLLow (Bi) = FOLLOW(Bi)U TRAILER

if < E FIRST (B:) :

TRAILER TRAILER U (FIRST (Bi) - 2)

else : TRAILER= FIRST (B:

else :

TRAILER = FIRST (B:) (aka & B ;3 Since FIRST(x) = 3x3

For some terminal x)

Example? -> Classic expression grammar :

Goal -> Expr

Expr-> TermExpr'

Expr - + Term Expr
Goal ↳

,
num

,
name eof

J
NT FIRST (NT) FOLLOW (NT)

1 - Term Expr Expr 2
,
num

,
name eof,

1 E

Expri +, -

,
2 eof ,

Term -> Factor Term'

Term' - X Factor Term'
Term <

, num
,
name 20f

,
C

,
+,

1. Factor Term' Term' X
, +, E erf

,
3

,
+, -

19
Factor C

,
num

,name eof
,

3
,

+
,

-

,
Y ,

Factor -> (Expr >

I num

I name

What is the (Full) Predictive, +Let START (A-a) be defined as :

or (2(1) Property? · FIRST (a) U FOLLOW(A)
,
if a EFIRST(a),or

· FIRST(@) otherwise
.

-> Given a grammar G and its FIRST and FOLLOW Sets
,

we say that G has the

(((1) property i .
8

. 8.
.

A + a and A+B implies

START (A + 0) & START (A + B) =

- A grammar with the LLCK property is a predictively parsable grammar.

Example of a Non-12(1) Goal - S NT FIRSTINT) Let A-S-A and A-BYS-B

Grammar ? S - AlB S (
,

9
,
b -> START(S + A) = FIRST(Al = 9 C

,
93

* - (A) I a
A C

,
a -> START(S -> B) = FIRST (B) = 5 C

, 63

B + (B) /b B 2
,

b -> START (SeA) & STARTCS -B) : C
.

Since it

isn't O
,
this grammar doesn't satisfy ()(1) property !

What isLeftFactoring? -> Transforming a non-LL1) grammar into an <LC1) grammar

-> Not all grammars can be transformed

How does it work? -> Assume a grammar G with productions A-dB , and A-aB

-> If a derives anything other than 5
,

G is not L7(1) bi doesn't satisfy property.

2. Left-factor to pull the common prefix ,
a

,
into a separate production :

* - &Al
,

A + B , and A + B2
2-

If STARTIA' - B
,
) n START (A + P2) = 0

,
G MAY be LLL1)

Example of Left Factoring? -> Non-1241) Grammar G :
Factor - name Iname [Arglist] I name (Arglist)

Arglist -> Expr MoreArgs

MoreArgs +
< ExprMoreArgs IE

-> Left-Factored : Factor - name Args

Args + (Arglist] 1 (Arglist) I a

Arghist -> Expr More Args

MoreArgs +
< ExprMoreArgs IE

How does automatic parser
- write a CFG and generate an excellent parser

generation Work ? - The parser generator analyzes the CFG & encodes the information into :

1) Tables to drive a skeleton parser ; Or

20
A direct-code recursive descent parser

-> Generated parsers are efficient (asymptotic) & fast (constants)

-> Parser generators handle most prog. lang· Features

· LRLK is more general
·

(L11) accepts a strictly smaller class of langs & grammars

-> Standard work-arounds cover the features that do not immediately work

RECAP : What is Backtrack- -> Requires backtrack Free Laka predictivel grammar

Free Top-Down Parsing ? -> Build FIRST and FOLLOW Sets

-> Use the 1711) condition/property to know whether a grammar is backtrack- Free

-> use left-factoring to rewrite a grammar to make it backtracks free

Top-Down Parsing
-> Recursive Descent

->

ISKIPPAD-see end no
lecture

.
ANDtop-down betrel

I
-> Table Driven

bottom-up

tations ·Todays Kopic !Intermediate Represen Ch . +

RELAP : Where are we now, &

in the compiler ?
source Front Ira

Optimizer
ER

s Backend - targetprogram End
program

↑
compiler

7⑫- Passinga Semantic Elaborations
·I

-> steam of chars -> stream
-> is stream of words a

·
-> static semantic analysis-ofwordacategory ,

lexeme
sentence in the source language ? -> is the sentence /statically)

pairs
-> maps stream of words - sentences meaningful?

-> COVERED-
in source lang

- Output : I . R .

-> COVERED- -> NOT YET COVERED

What is the Im ? -> The authoritative version of the program
I

Front End Optimizer Backend

↓ i ↓ i ↓

Produces IR traverses & transforms IR transforms IR into native code

-> Encompasses program representation
,
and derived knowledge :

& Symbol tables & storage maps

-> The compiler can manipulate only those details that are represented in the IR

What is the taxonomy (classification) + Structural Organization :
graphical ,

linear
, hybrid

of an IR ? I -> Level of Abstraction : near-source form
,

near-machine code form

What are the ways to s

-> Mode of Use : definitive
,

derivative

↓tructurally Graphical JR (e .g . parse trees
,

ASTs

Yaka MSO -
organize an IR ? ·

encodes program structure

-
⑳ 0· useful in optimization & in source-to-source translators ①Y Z
⑧

O
* Graphs can be large if not careful good for instruction selection

-> Linear IRs (e .g. 3-address code
,

stack machine code (load] 1 = > =

· simple , compact data structures loadIDArray A
,
i

, j
Sub rj , = = Tz

good for code relocation
loadI10 => -3

·

easy to rearrange mult
, ry

= v
&

· no structural information
Sub Y

,
r

,

=) rs
add

y , Vs = -b

-> HybridIRs (e .g . Control-flow graphs
load] &A = r

=

add M , we = W
· combine graphs & linear code load rz =

Dij

What are the modes of use? - Definitive IR : primary representation of the code,
good for address optimization

transmitted from one pass to the next

-> Derivativ IR : built for a specific temporary purpose .

Used within a single pass

of the compiler .

What are the key properties
+ Ease of generation

-> cost of manipulation

of an IR ? -> Ease of manipulation -> procedure size

-> IR design affects the speed & efficiency of a computer

- Graphical IMs -

How do Parse Trees ->
RECALL : Parse tree : concrete rep.

of the derivation
Goal -> Expr

weigh up ,
as IRs ? -> captures the structure of the grammar Expr - + Term Expr

Pros? -> Includes syntactic details of the input program
1 - Term Expr

1 E
-> Useful in source-to-source compilers

Cons ? ->Tend to be inefficient JTerm -> Factor Term'

Term' - X Factor Term'

->
Explicitly States what could be represented implicitly 1. Factor Term'

Goal 19

Example? -> EX = I 2 x - 2 &
y

Expr Factor -> (Expr >

/
I num

Expra Term
/I - I name

Term Term Factor&

I Factor j

Factor
Y

*

How are ASTs
,

as IRs ? -AST = a parse tree minus most nodes for non-terminal symbols (many fewer nodes

Program

Pros?I I

Expr-> TermExpr'

than a syntax tree]
I

Functions

Fun main
-> Often used as initial IR /

Returntype Body
Cons? -> SAST node sizes tend to grow large void Assign

Example ? < For the expression
(= X-2* y ; & S -

Source
Target I

I
Op-

ValvelD C
/

How do we use Directed Acyclic -> DAGIR = AST with a unique mode for each value. Id X Op

Graphs (DAGs) as ERs? A e- g .,
AST with sharing Tay

Pros ?
-> Given 2 instances of the same expr

,

the compiler may be able to arrange the code to evaluate

it only once .
(For ex

, only performing evaluation of ax2 once but using the result

-wine
,
in an expression ax2 + a x2 x b)

&
-> Encodes redundancy .

2 . g .,
with this example ,

the AST would contain I distinct copies

of the expression a x2 .

· DAG avoids this duplication by reusing identical subtrees &
allowing nodes to have multiple parents .

-> Makes sharing explicit

Cons ? ->Compiler must prove an expressions value doesn't change (in order to reuse

·

easy if there are assignments or function call

Example ? > 982 + 142863 I
-

How do the trees get implemented?" Nodes of various types & arities
,

connected by edges

-> Allocating nodes of diff sizes complicates allocation & fragmentation in the

heap (malloc())

-> A compiler executes just often enough to justify a careful implementation
.

What is a dependence graph ?
- Encodes the Flow of values in a block

-> Nodes = operations

->

Edges represent a flow of values

-> Often built as a secondary In for scheduling or optimization

-> Used as a primary IR in some JITs (just-in-time compilation(

What are call graphs?
-> Represent the flow of control between procedures

-> Nodes = procedures

-> Edges represent individual calls (each edge represents a different calling environment)

-> used to optimize multiple procedures together
->Complex call patterns create complex graphs Le .g -, recursion can create cycles

-> Some interprocedural optimizations traversed change the call graph (e . g ., inline substitution)

- Linear IRs -

What is 3 address code ? - Statements of Form X & Y Op 2

· 1 operator (op) at most 3 names (X
, Y

,
& 2)

->Used in many modern compilers

-> Resembles many real machines

codes ? I
load ra mult 3 2 2

-> Introduces a new set of names :

e .g. 21 x-2
*

y
becomes to 20y, zX - t

How do we implement 3-address -> As a set of quadruples : A table of 1711 small integers ty 2

-> Each quadruple is represented w/d fields : operator, t, b

Loperands (or sources)
,
and a destination ty te x +

2

-> Opcodes & operands stored as small integers to a

Pros of quadruples ?
- Simple record structure -> Easy to reorder to +

-
- +

y

3-address code for a -2xb-> Explicit names

Example ? -> For a -2xbi Opcode Op2 Op 2 Op 3

load r1 b load 2 b

loadi r22
2 loadi 2 2

mult r3r2 r/

sub r3 ry r3

load 8 a

equivalent RISI assembly
Sub 5 & 3

Quadruples

What are control f

graphs ? Nodes = basic blocks

Edges = transfers of control

· branches
, jumps ,

predicated instructions

How do we use them

to represent code in blocks

benefit : easy navigation between blocks

For program analysis
(x = y) ↓

a + 2 Ms
8 if(x = y)O

bt S at 2

bus ↓. a + 3

by J
& O

[a - 3

·

no Bas! 2 - a + b

b - y·- a + b

Sis show grammatical structure
,

while CFGs show control flow

Eg : While i < 100

strt
z

Stm +
z

What are namespaces

Scopes? Stems

· E .g-, use libraries wo concern that a name was already used

scopes create a clean slate for naming
How does the IR includes a collection of annotations ; it records names

,
values

,
constants

,
& locations

program entities

How are the IRs records of an instance of a names a specific declaration

hierarchies to model scope rules & Inheritance

What are some key map from a name to a specific entity (declaration
,
definition

copes , visibility
·

binding & general organization
mechanism to Find & access a given entity

torage assignment

a - area addressability

How does the compiler map a
- Compiler needs info to generate an access (load

,
store

,
or call

name to an entity (at compile - - To translated reference to an entity
,

the compiler needs to know about the

times ? entity
-> SOLN : Derive info in the compiler's front-end

,
& store that info in some handy

form for later use.

· This is what the IR isFor ! IR is where we "store that info"

What
are symbol tables ? ->Compile-time data structure for storing info for mapping names to entities

-> Maps names (symbols) to their attributes

· This is how the compiler resolves names

2 .

2nitial info is given where the entity is defined .
Aka :

· A variable's declaration or first use

· A procedore's definition or its prototype

·

An object's class declaration (plus its superclass
,
super-superclass ...)

2
Compiler constructs a type signature to represent that entity

· It may also assign storage to the entity

How are symbol tables (STs(-> entry exists for every symbol ,
& contains associated attributes :

structured? · lexeme · type · address length

·

Storage Class (local
,
statio , global ,

constant
,
etcl

conceptual example of an ST ? Name Type Addr Lem Storage Class

Y int z & local

W flsak e-w J Static

X char 12 8 Static

2 double 8 y local

ronment Ch . SNaming Envi

What is scope ? -> DEFN : The region of a program where a given name can be accessed

-> A contiguous set of statements in which a name is declared
,
visible

,
& accessible

What are the 2 main types?
-> Lexical Scope

-> Inheritance heirarchies

What is name resolution? It mapping each var reference to its specific declaration

-> Compiler does this using either lexically-scoped STs
,

or Inheritancehierarchy STS

- cal Scopes-

What areLexical scopes ? - DEFN : Scopes that nest in the order in which they appear in the source code

-> Main rule :

An
occurrence of name m in the prog . at point p ,

refers to the entity named

& that was created - implicitly or explicitly
- in the scope that is lexically

closest to p .

How do scopes present in -> Nested regions of code - e. g. procedures ,
blocks

,
structs

,
modules

programs ? -> Each scope creates a new name space

-> Scoping is tied to program semantics - languages may differ in scopingroles

&
e . g. rules for nesting , inheriting ,

or obscuring names from outer scopes

What are Algol-like languages? - ALGOL = Algorithmic language (Name comes from the family of languages developed

in 1958)

-> Examples : Algol ,
Pascal

,
Fortran

,
C, Scheme

,
Java, C ++

How do Algol-like languages handle -> Each scope creates its own namespace le .g. procedure ,block ,
structure(

scoping? · Procedure scopes typically contain formal parameters

-> Almost any name can be declared locally

Lexi

I
-> Scheme : global , procedure-wide ,

& nested scopes

-> Local names obscure identical non-local names

·
e .g .

in this code :

inti = 10 ; everything inside the scope of the for-loop only
For (inti = 0jib; i + +)E

recognizes the variable named "i" that was declared

... 3
inside of it (in the guard line

- Local names cannot be seen outside their scope

-> Scopes are searched in nesting order
,

inner scopeto outer scope

How do common Aly
-> Algol , Pascal : nestad procedures

,
often with deep nesting

langs behave?"-like -> Fortran : · local
,
static

,
& named global scopes

· no nested procedures

'->C added a little to Fortran

How does Python handle -> Python has Buested lexical scopes : "builtin global (modules

Lexical scopes ? · local (function) ; functions can be nested

-> Declaration before use not required - First use is defining use

- If defining use is :

·

Assignment : creates new local symbol With inferred type
· Reference : binds to or creates a global symbol

· Nonlocal declaration : ensures name is in the global scope

How does the compiler model ->Compiler builds model of the scope structure of the code

lexical scopes? -> The parserbuilds a set of tables & search paths

·

one table for each scope

·

names declared in a scope go into the scope's table

·

search paths link the tables together
-> The parser builds a distinct path as it enters or leaves a scope

· Path : instantiates the namespace according to scope rules

· Preserve the search paths with the code

->Compiler preserves the tables for later use (debugging)
How doScopedSymbol

- New tableFor each scope ; Individual tables are hash tables with OC2)

tables work ? lookups

-> Chain tables together into a "Search path"

· search starts with 1st table
,

& "Fails" its way up the path until it finds

the name
,
or falls off the end of the path .

Search I IPath

Sun
V int b int

->"Scope Model" of the code : X int
b char* a chary

Y Char
*

Scope J :
2 float

X double aShort

int a
,

b, c
W Float

Example of scoped STs? Scope K :
-> Tables to model the name space :

char c ,
d Scope :K

Parent: J
Scope L :

/nar scopesNonefloat b
, d d char

in
S I
It

How are the scoped tables -> Source language defines the syntactic constructs that demarcate (set the limits/

built? boundaries of) scope

&

2. g .
New procedure ,

block
,

class deal
,
struct deck

-> Demarcated Scope entry & exit :

· Table is created & added to front of search path UPON block entry

· Table is finalized on block exit

-> Variable Declaration :

· An entry for the declared variable
, along with its attributes

,
is created in

the current table

· langs that don't require type declarations infor type info Le .g. Python

-> Variable Reference : a lookup upon the current search path (e.g . from

current scope , moving outwards) is triggered
- Inheritance Hierarchies -

what are inheritance hierarchies?- Another type of naming environment

(24)
-> A data-centric naming scheme : data & code is accessed relative to the object

they belong to
,
rather than relative to the current procedure

When are they used ? ->In object-oriented languages Leg 2++
,
Java

,
Python (

- subclasses & superclasses define the inheritance hierarchy ,
which is orthogonal

to the lexical hierarchy

RECALL: What are 00-langs ?
-> Object : an abstraction with members (data

,
Lode

,
other objects) ; i. e - a class instance.

maintains internal State

-> Class : A collection of objects / the same structure .

Defines data& code member ,

00-langs ? I
-> Bata objects inher it code

,
data members from Alpha definition

of each instance

-> Inheritance : A relationship defining a partial order on the namespaces of classes

-> Receiver : methods are invoked relative to an object--the method's receiver

·
e . g . "self

.

"

For Python
,

or "this
.

"

For Java

How does inheritance work in
-> For ex : Class Alpha [....

Class Beta extends Alpha [... 3

-> Beta may redefine names from Alpha

-> Methods in Alpha must work correctly on Beta objects (provided the method is visible

in Betal

-> Beta may itself be extended - this creates a true of inheritance

- Beta may inherit from multiple immediate superclasses - this creates an azyclic graph

of inheritance

-> Given a named member
, compiler searches the inheritance hierarchy to resolve

the name.

How does hierarchical scoping
-> Such class definition creates a new scope

Work ? - Data members
,

code members are in the scope

·

Visibility parameters can affect scope

-
Scope tables & search paths work as in lexical scoping

Example ? Class Point [Scope Tables Classiclass

Superclass : None
public int X ;

Class : Point
private int y ; Superclass : Class

11
public void draw 2) E ... 3

public void more2) [...
3 ·Class ColorPoint extends Point & lic

private color c ;
Class : Color Point

public void draw 1) E ... 3 Superclass : Point

public voidSetz (ColorX) E

3

this. c = X 3 ; are S
What is compile-time name -> At compile time

,
the compiler looks at STs and etc. & maps each name to its

resolution? address in memory.

- Runtime name resolution : The lookups & etc
. are done during execution .

What is a closed class -> An 00 language has a closed-class structure if it requires that class definitions/

structure ? structures must be present & Fixed at compile-time .

-> OOLs with closed class structure are able to resolve names at compile-time

Characteristics? -> Hierarchy known at compile time

-> Compiler can build models & emit code for all references EX: C ++

-> Virtual functions force runtime binding
What is an open class structure?I Characteristic of DOUs that allow the running program to change its class structure

at runtime (for ex
, importing classes in Java

characteristics?
-> DOLs with open class structure must resolve names at runtime. EX : Java

-> Hierarchy can change at runtime

-> Compiler can build models & emit code for some references.

-> Compiler must emit code to resolve some references at runtime

How does dynamic (runtime) name -> Runtime creates & maintains the namespace tables

resolution work ? · higher cost for references · New tables & Search pathe created as hierarchy changes

-> Frequency of change is critical

Cunfinished notes from Slide)

RELAP : Lexical vs Hierarchical + Lexical : Given an unqualified namea in procedure p :

scoping?
& compiler first searches lexical scope for n

,
then searches hierarchical scope

> Hierarchical : Given a qualified name my _ obj . n

& compiler first resolves the name my-obj ka an object) lexically ; eg

looking for where it was instantiated

* Compiler then resolves the namea using my-obj's hierarchical scope
- Visibility -

What is visibility?
-> A name is visible at point p in the Sic code if it can be referenced at point p.

->

Visibility is orthogonal to lexical & heirarchical scoping

Lang· defines programer's level of control over visibility
- Visibility info included in ST entries

EX : How is visibility defined in C? + C : Static variables : Lifetime = the entire execution

A

Inside a procedure ,
value is preserved across invocations

-> Visibility restricted to current& nested scopesI -

z

·

pub lic & protected vars of any of MyClass' superclasses

A Outside a proc : visibility restricted to current File

EX : How is visibility defined in Java? -Jura : public ,
private , protected ,

& default methods or data members

· public : visible anywhere in the prog

private : visible only in the enclosing class

·

protected : visible in enclosing class
,

other classes in same package ,
& any

subclasses in any package

· default : visible in enclosing class
,

other classes in same package
-> EX : Given MyClass , member MyMethod() ,

and instance Obj , Obj . myMethod (I can access :

· local vars declared in myMethod() : data members of both obj & My class

· classes defined in same play as Myllass,or in any explicitly imported package
&

public class & instance vars of imported classes package class & instance vars in the pky containing
MyClass

Type Information Ch. S

What are types? -> An abstract category defined by a sel of properties .
All members of the category

have the same set of properties.

What is a type system?
- The set of types , their properties ,

& the lang's remantic definitions that

use types

->Provides additional context & rules of behavior over the CFG of the lang,
which are useful to the compiler ,

e
.g.

·

checking that operator & operands are conformable Legmst!

z

checking function sig
·

garbage collection

What does a type system
-> Base Types

consist of ?
-> Rules for constructing types

-> Tests for type equivalence
-> Rules for type inference

What are the Base Types ? -> Common : numbers
,
characters

, booleans

·

processor support exists
· various varieties

-> Additional (e
. g., not universal ; language dependent) :

·

pointers ,
recursive lists

,
rationals

, strings ,
maps

What are constructed types ?
-

Aggregate types that allow the programmer to organize & use base data as higher-level
constructs.

-> 3
. g ., arrays , strings ,

enums
,
structs

,
unions

,
recordsI -> Concatenation Leg "hello" + "World") ; Comparison (e .g . "Fee" "Fie" (

What is an array <high levels ? - Groups multiple entities of the same type .
Indices give each entity a unique name Leg

↑22][3) is unique) .

What are strings (high level)? -> More than just an array of characters

-> Length of string vs length of allocated memory

What are enums /high level) ? - A set of self-documenting names for a small set of constants
,

e -g.

enum Day &Mon
,

Tres
,
Wed, .. 3

-> Compiler maps distinct elements to distinct values·
EX :

What are structures ? -> Group multiple entities of arbitrary type Struct Student E

-> Elements are given explicit names , e . g .

"int pid ;
" ist pid;

char 2) name ; 3
-> Type is the ordered product of the element types . EX :

union Node EWhat are unions ? he-> I disjunction of multiple entities

struct N1 one ;-> Type is disjunction of the type of

component entities Struct N2 two ; 3 ;

How is type equivalence
->Straightforward for base types

tested ? -> ↳anguage-dependent for constructed types
·

name equivalence - structure equivalence

How is type inference -> Simple components (num
,names : declare before use ; infor by context (may

conducted ? require second pass of the IR)

-> Simple expressions : Operator & operand type determine resulting type

-> Expressions involving function calls :

· requires type sig.
of function

· function type may be parameterized

Example of parametric -> Filter : (a + book) X list of a - list of a

Y ↳ &

polymorphism? Filter (lambda x : x < 5
,
(1

,
0

, 6
,
3 , 8)) + [6

,
8)

&Intax-Driven Translation Ch.S

RECAP : What does the IR do? - Building the IR encodes information about named entities that is needed

by subsequent phases of the compiler :

· Namespace
· Storage

· Type

-> RECALL : Definitive IRS :

Y

· AST · 3-address code

(S- DT) -> GOAL : Translate the source code into an IR

-> computations may include :

· building the AST

·

building the symbol tables & type checking

What is syntax-driven translation?

I
-> A collection of computations tied to the grammatical structure of the source code

·

emmitting 3-address code

g

evaluating expressions

What are the 2Strategies for -> Build computation into initial parse-e .g .,
action rules in the grammar.

S- DT ? · the grammar's structure determines where the computation happens. e .g .,

taking the code where you are parsing ,
and adding in code that also

performs relevant computations for the variables being passed

·

tying semantic actions to grammar productions

-> Walk the parse free to compute
-

Using Action Rules in the Grammar-

What is our "toy example" grammar?
-> Grammar for positive integers ,

G2 (terminals : Edigits ,
NTs = &Number

, Digitlist]) :

Number ->

digit Digitlist
digit

Number
Digitlist -> digit Digitlist/d · Ex : "123"C DigitList (DL]

/ --
aI digit.What might its parser look boolean Number()[digit

like? if (word == digit) :

2

!

- -

D
Word = NextWord()

return Digitlist(

else : return False 3

boolean Digitlist()E

if (word = =digit) :

word = NextWord()

return Digitlist(

else : return true

How would we use SDT here ? SDT : The grammar determines the computation

-> Use points in the grammar to convert stream of lexemes into corresponding

integer value· E . g ., turning E ,
numb

,
<2

,
num)

,
<5

,
num > 3 into an

actual integer with value 125. (boolean ,
int) Number (valve) [

How would we modify our parser - Same control-flo-as before
,

but now
if (word == digit) :

lations ?for G
,

to perform trans
We are passing/carrying an attribute value = Ctol (word)

& through the calls in order toIvalve

S
Word = NextWord()

simultaneously accumulate/compute the
return Digitlist (value)

else : return (false ,
invalid-value) 3

(boolean ,int) Digitlist (value) &

Cto] = function if (word = =digit) :

that returns int value

word = NextWord()

return Digitlist(valve)

else : return (true
,
value(

What is another way to
computations in the grammar !

action rules to build
a left-recursive grammar Gy for 1 or more digits :

into initial parse? umber Digitlist

·

List & Digitlist digit /digit "blocks" /code snippetsM of a single char value = (value "10) + Cto2 (word)

Example ? ~ eg
duction

,
define semantic actions. When the parser reduces a rule - for EX

recognizing DigitList digit & reducing it to Digitlist
- it then runs that block

,

the already-computed value of the left Digitlist ,
and the current digit ,

to

compute the new Digitlist value.

-> Implementation : let $$ = the NT on the LHS
,
and

Si = the ith symbol on the RMS

Number - Digitlist Ereturn $1 ; 3

DigitList - Digitlist digit & D$ = $1
+

10 + C+o2($2) ; 3

I digit [$$ = C +o I ($1) ; 3

Tree-

PT First
,

then separately traversing it & performing computations .

+> 2 . 4 ., Fur grammar Gz : Value (root) :

if (root is Number) : return Value (root
. child)

elifcroot is Digitlist) :

return 10
* Value (root .left) + Valve (root . right)

a lif (root is digit : return Cto] <root . Lexeme (

Storage Layout Ch .S

RECAP : What is physical & -> Physical addr
. Space : 23 linearly addressable bytes in memory

-> Mapping from physical to VM :

·

policy : OS determines mapping via page table ,

· mechanism : Hw walks the page tables on every memory reference

-> OS HW enforce process isolation

OXFFFFFFFC

OS

space defined? Stack ~ holds procedure activation records

W

a

virtual memory ?

I
-> Virtual memory : each processor/process gets its own linearly addressable by tes in mem.

& memory allocated explicitly by program

Rectan : Now is theman

...

&
. size determined at link time

· statically defined entities

~ executable code; fixed size

-

-

How does the compiler handle -> Compiler decides where each entity will live at runtime /requires namespace & type infol
.

storage layout?
->

Assign each named entity a runtime home :

2 the logical data area (e .9 . Stack
,
static

,
etc .

) ; depends on lifetime & visibility
b) the offset within the data area

What are the storage classes? - Automatic
,

Static, irregular

-> Dependsun entities lifetime

What are automatic variables? -> Lifetime matches that of declaring scope

Where are they stored? -> Either the scope's local data area, or a register

-> e . g .,
if X declared in procedure feel)

,
then compiler stores X in Feels local data

area
.

X becomes part of Feels activation record (AR).

-> If x is local
,
scalar

, unambigous : Compiler can store X in a register.

What is an unambigous value? -> A value that can be accessed by only one name.

What are some examples of -> Pointer-based vars -> call by reference parameters

ambiguous values ? -> Array-element references

-> Ambiguous values cannot be kept in a register across assignment statements.

What are static variables ? -> Lifetime spans first definition to last use (or
, depending on the implementation,

lifetime may span entire execution of program
-> EX : global vars ; static vars inside procedures

where are they stored ? ->Single. static data area per source File

What are irregular variables? - Lifetime is under program's control-program code explicitly allocates

Space (e . g . Malloc() in C)

-> Compiler's runtime support library

Where are they stored? -> The variable itself is stored in the runtime heap

- The handle (pointer ?) to the variable is stored in local or static space.

What are temporary variables ? -> Lifetime is short

->2 . g ., X- 2 *
y

Where are they stored ? -> placement depends on size. If variable size is ...

known
,
and small & Compiler places in register

large , but bounded & compiler can place in local data area

Unknown c compiler emits code for runtime heap allocation

- Storage Assignment-

How is storage assigned by the
2.

Assign all small
,
local , scalar

, unambiguous variables to a unique virtual register (reg)

compiler ? Assign each ambiguous value an offset within its data area
.

How are ID arrays laid out -> Let w = width y each element (inbytes) ; high = max valid index ; low-min valid

in storage ? indef

-> ID Arrays laid out as (high-low + 1) &W
contiguous bytes of memory

-> Then
,
the address of VEi] is &V + (i-low) W

What is one method for lay ing
-> Let col = num-columns and row = num . rows

out 2+D arrays in storage ?
-> Method 1 : laid out as 2018 row ow bytes of contiguous storageI 2-

ptr = width of each pointer (in bytes)

·

layout can berow-major or column-major order ; language dependent

-> Entire array stored in one big block of memory.

What is the other method ? -> Array of pointers : laid out as one contiguous block of
row pointers,

each of which points to coldw bytes of contiguous storage
-> 9

. g., A 2i][j][k]. A points to an array of pointers
,
aka a contiguous block

of s elements. Each of these elements is a pointer to an array Jaka contiguous block

of j'row-pointers .
Each of these elements is a pointer that points to an array

(contiguous block) of K data elements
.

· The array has a total of isjok data elements
.

-> Total storage needed for the array : Crowaptrl + Crow & co1 WI
,
where

Example of storing an
-> A[0 : 1120: 2390 : 3) :

array using pointers/ #· -> 0
, 0

,
0140,1/0 , 0 ,210 . 0

, 3

indirection Vectors ?
·190 , 1

,2/017-

A-> o
!j (

f&
8

·

0
.
2

, 110 .
2

, 210.
2 ,

3-

-Y-
- >

IW
-

2- &

How are strings laid out in- Size of layout is not fully determined by length of string

storage ?
· variable may hold diff strings over its lifetime

->2 main storage options :

· Null-terminated : length computation is O(n)
,
where n = length of the string

· Explicit length field : length computation is O(1)

How are structures laid out in
- space allocated for each field in the struct

storage ?
->

Loptions for assigning a field's offset within the struct : declaration

layout, or compiler controlled

What is an object record ? -> Data structure/block ; each instance of a class has an OR.

COR]
-> Contains :

· data members specified by the object's class

·

pointer to its class

·

pointer to array of the class' methods

-> Additionally
,
inheritance requires containing data members specified by

Superclasses & access to superclasses' methods

Where are they stored ? -> On the heap

Example ? -> class

- Class
Class i -

class :

g class

Superclass :
-Point

code :·
Xi

setz :

class Y
instance Class

Ci ColorPoint

> Color Point A

laid out in storage?
->

single inheritance : prefix layout

-> Multiple inheritance :

· compiler imposes an order on superclasses

· subclass instance ORs contain members for all Superclasses

·

compiler adjusts OR pointer as needed
,

when calling superclass' methods

How does the compiler assign
-> e . g . how is storage layout info embedded in the IR

storage layout in the IR ? -> Depends on the type of language

How are object records

I
-> Layout in subclase instances must meet superclass method expectations

How is this done for langs with - Compiler builds up symbol tables while processing declarations

all declarations before executables' ? 7 Compiler performs storage layout before processing executables

-> code gen. Uses concrete references

How is this done for languages ->Compiler builds upSymbol tables

with 'declare before use' ? - zode generation uses abstract references

->
compiler performs type inference

, storage layout

-> References are refined

What about langs that drit require
-> Same as for langs that do

,
but with possible additional passes required

declarations ?

- Alignment & Padding -

What is alignment ?
-> Address of a value is divisible by the size of the value (in bytes

-> ISAs require aligned values ,
e . g .,

a 32-bit int begins on a 32-bit addr boundary.

How does the compiler enforce -> Ensure data area begins at aligned address

alignment? -> Ensure layout of data area is internally aligned

declared
M

What is the effect of eaching?
- For 2 vars with spatial proximity (close together in the code) :

· brought into cache at the same time
,

on the same cache line

-> For 2 vars with temporal proximity (accessed closet in time) :

· want them both in cache at the same time

·

non-conflicting cache lines

-> Compilers Control depends

Procedures Ch
. 6

What is an activation
-> Block of mem . For the control & data values of a procedure instance

record (AR) ? · often stack based
,

e .g .
a "stack frame"

->

key data structure for the implementation of procedures ,
e . g .: calls & returns

,

lexically scoped name spaces

What is a procedure ? -> Control-flow based containment of a unit of execution ; an abstraction to create

a controlled execution environment

-> A called may be called by many diff caller

-> A Procedure (proc) defines 3 abstractions :

V
call : transfer of control to a proc

2 -

namespace : a new , protected namespace per call

3.
interface : a standardized interaction blu caller and callee.

How would a proc's SF look ? -> ---

arg 10

arg 9

saved registers

local vars

Heup

What state is saved across
-> AR pointer (frame pointer ,

base pointer

procedure call ? I 2 Prologue callee

procedure calls ? · Stack pointer
-> RA of caller

->
called-saves registers

What state is not saved ? -> temporary registers
- Procedure Linkage -

I .What are the phases of a /Precall caller

3.

Epilogue
J

*
Postreturn

What does the caller do during -> Save any necessary temporary registers in AR

precall ?
->

Allocate space for Callee's AR

-> Save actual parameter values or references (in registers and /or designated AR

slots)

ave
-> S current AR pointer in AR slot

-> Save address to return to (in dedicated register or AR Slot

- Jump to called

What does the called do
-> Save

any needed called-saves registers :

during the prologue ?
· return address

· sO-sIl

-> Allocate space for local data area

-> Initialize local variables

RECALL : What are caller - & -> callee-saved : registers that caller expects called to NOT overwrite. If

calle - saves registers ? called wants to use them
, they have to preserve the values in those registers

Le .g . On the stack)
,

& then restore them before returning
-> caller-saved : registers that caller expects called to overwrite. If caller

wants to preserve those values
,

it must save them on stack before making
function call .

do

What does the caller" during
- Save return values (indedicated AR slot and /or registers)

epilogue ?
-> Restore RA

-> Free space for local data area je . g .,
more the sp/frame pointer back up

What does the called do
-> Free callee's AR

during postreturn ? -> Restore any needed caller-saves registers
-> continue execution

Example ? -> main :

IwaO w

Iwa] y

jal add2

jal print

jal zero exit

add2 :

/Prologue :

addi spsp-12 // make room on stackFor RA and params a
,
b

sw ra O(SP) //pushold MA on to stack

swat 61sp> //push the params a and b on stack

Swal 8(sp) //b

In at 8(sp) //now that param saved
,
load the param for plusplus in reg

jal plusplus /I result/retral will be stored in a0

Iw to &(sp) /1 to = a

add to to a0 11 to = a + b

addi nO to 0 /la0 = to = a + b = return val For add 2

Ladd2 ctd
...

)

/repilogue :

Iw ra OCsp) /restore old RA

addi sp sp12 // restore SP back up

ret

plusplus : /plusplus makes no calls
,

so no prologue or epilogue needed

addi O at 1

ret

ISummary of the phases
- Precall & prologue :

of a pro , call ? · save state of caller

r set up AR for called

· transfer params & control to called

->

Spilogue & postreturn :

~ restore state op caller

· tear down AR For called

· transfer ret vals & control to caller

What is parameterraunteBirdingareparametocale's
for easy

·proc can be called from multiple call sites

j caller does not need details of callees implementationI -> In the Callee
,
the value has one name : the name of the formal parameter

->2 conventions :

·

call-by-value
· call-by-reference

What is call-by-value param
- Caller copies value into appropriate location - e . g. AR slot,

,
or register

binding?
g

copy of param val is passed to the callee

- The parameter's value is evaluated & initialized by Caller

· modifications to the param value inside the called are not visible to the

caller main :

basically ,
the caller opes the value

Example ? -> int Fee (intx) [Iw aO a of the param into another reg ,

& then

X = X*2; jal fee passes' on the val via the reg. . Upon return,
->

return x ; 3 Fee : it is caller's responsibility to 'Save' the

int main [mul aD aW 2 retvalve - e . g ., by storing it back in

a = 3 ; ret memory.
b = Feelas ; 3

What is call-by-reference -> Caller passes the addresses of parameters to the called (either vic a

reg
param binding? or a slot in the Callee's AMY

·

e . g .,
rather than Iw at parame ,

it would be la at param]
-> In called

,
value

may have more than one name

· the name of the formal param

·

the value itself
,

e . g. if callee has direct access
,

or if 2 Formal

params point to the same actual param

-> Changes to the value inside the callze
,

ARE visible to caller

-> called has extre level of indirection for each ree of the param

Example ? int Fee (inkx
, inty)[main :

X = 2 *
X - 1 a a0 a

y = x + y ; la alb

int main() E laa1a

inta = 2 ; jal fee

int b = 2 ; Fee :

intc = feela
,
b) ; Iw to 0(90)- calle directly loads in the ral

int d = Feela
,
a) ; (w +10(a])

langs ?

I return y ; jal Fee

-> In this ex
,

Feela
, b) will mul to to 2

return 8
.

but Feeca ,
al add I to -L

will return 16-even though sw to 0(a0)-> callee directly modifies the ral

both times
,

we were basically sw +10(a1)

doing Fee (2
,
2). ret

-> With feela
,
al

,
both params are pointing to the same param.

How are values returned ? -> Caller sets return value

· in caller's AR
· in designated register

- Ret val may be a value
,

or a pointer to a value on the heap.
- Procedures in 00-languages-

How do procedures work for 00

TAR:Manages
ontol & local storage info for mois

· objects' lifetimes are orthogonal to methods' lifetimes

· Or manages persistent state of object

· or instantiates the inheritance hierarchy

RECALL : What is an object -> A runtime data structure , typically on the heap

record? -> Pointed to by the Object Record Pointer (ORP)

-> contains :

· pointer to class

· pointer to class' method rector

·

class-specific members

-> OR allocated when an object is created

-> or deallocated when an object is no longer reachable

Example ? -> single inheritance
,

open class structure example :

Class: Class
What would the symbol

-> RECALL: heirarchical scoping Superclass : None

tables look like ? Class : Point

11Superclass : Class

X

Y intBullet Class : Color Point

Z I I private

draw void() public

more/void/publicT
a

class

o Class
classi

What would the OR For a
class :

8
codei

-

-

-

code
: methods:

2Point obj.
instance look like? Superclays: 18--

Yi

2 :

- draw:

2Class Point

a Point

class

Coporpoint ·

move :

:
move :

draw :

class Point

What if we add aColor point

-- class

class: o Class
Obj.

instance ? -

- - a
class : A - codei

-8 -
-

methods:

-

-

code : * -

- 7 2Superclays: 18-
Yi draw : draw:

2 :

-

class :-2 2- move : move :

a Point code: -

-

setc : Class Point
Xi

-

-Y :

-

Class ColorPoint
draw : draw :

2 :

- -
Set c '

:
move :

Ci

a Color Point

What is the process of -> Invocation happens relative to an obj . instance

emittingzode for method -> Instance must be visible at point of invocation

invocation? ->Compiler does the following
:

·

symbolitable lookup to find instance's ORP

↑
lexical hierarchy

2-
class hierarchy

· globa
in of

·

emit code to obtain code-vector pointer

· emit code to obtain method pointer

·

make procedure call (first param = instance's OMP)

What is a closed class structure? - Method impl. is known at compile time

-> St lookup produces the label of the method

-> compiler emits code to generate the proc call

- Addressing Variables within theProcedure -

How are variables addressed ? ->2 parts : base addr
,

and offset

-> local vars & static global vars have static base addresses

-> Variables with dynamic base addresses :I Y : word 8

· those belonging to enclosing lexical scope

·

heap-allocated objects

Example of a static base address? . data

W : Word Static vars

main :

IwaOw
· uses the compiler-generated labe

Iw

How does the compiler - For dynamic vars
,
base addr. is NOT known at compile time

dynamic base
addrehande -> Compiler does the Following :

&
ST lookup to Find variable's Coordinates (lexical hierarchy ,global scope

2)
emit code to obtain correct ARP

3)
emit code to add offset to pointed - to AR

8)
emit code to load the variable of the calculated address

Code Shape Ch.

& Expression evaluation

&
Accessing vars & aggregate data structures

&Control-flow constructs

-> procedure calls

What is the register-to-register temit code using virtual registers for
mambiguous ,

scalar values

model ? -> later : register allocative assigns virtual regs to physical ones

What is the memory-to-memory
-> emit code using memory as primary home for all values

What is code generation ?

I
-> Mapping source-language constructs to the target machine's instruction set

model ?
-> later : optimizations to increase register use

What is the emitted code ? - 3-addr code IR ; array of tuples

What is code shape ?
- The explicit& derived knowledge about the source prog ,

encoded in the IR

· live values
·

registers in use

·

memory references · type information

· instruction mapping
-> For ex

, consider X +y + z ... code shape determines later opportunities for

Optimization

-> Deciding code shape often requires I passes :

1- learn the surrounding context

2. decide code shape & emit code

- Expression Evaluation-

RECALL : What is an expression?
- e . g . X + y + z

-> Represent a significant portion of code

-> Efficient evaluation improves runtime of overall
program

-> Target machine with 3-addr form operators

· allows compiler to name the result of operations for later verse

· must RISC ISAs
, including RISC-v

How is code generated for -> Walk AST to : emit code to put operands in registers ,
emit code for expressions

expressions ?

What would the program exprinodel E -> EX : G - bxc

to generate code for expressions int result
,
71

,
t2 -> AST : Goal

look like ? Switch (type(node)) & Exper1casex , , +, -i
- Term

Term Term Factor
t1 = expr(node . left-child

/ I I

Factor Factor (name)C
-2 = expr(node . right-child) I I

(name) a (name)b
result= next

- register ()

emit (node . Up ,
+1

, +2
,
result)

break

case NAME :

result = access-value (node
. St-lookup())

break

case NUM :

result= access - number (node . St-lookups)]

break

3 return result ; 3

Example Walkthrough ?
-> For a-bxc ,

with a
,
b

,
c on the stack :

Iw to Ocsps-to = a

Iw + 1 &(sp >=-0 + 1 = b

In + 2 8(sp) - + 2 = c

mul +3 +1 +20
- + 3 = bx)

sob ty to +30 + = a - bxc

What is the convention for
Reg Name Reg Num Description

register usage in RISC-V ?
Zero & O Constant O

ra $1 return address

Sp $2 stack pointer

to-+ 6 5) S-7
,
$28-31 temporaries (caller-saves)

SO-51] $8-9
,
$18-27 Callee - saves (safe for caller (

a0 -al $00 - 11 function angs
& return values

a2- aT $12- 17 function args
-> RECALL COMP 311

How does the compiler
-> In a binary operation ,

the operand requiring more registers should be computed

reduce register pressure ? First

· results in the same number of virtual registers (VRegs
· later

, reg . allocation will produce code using fewer registers

-> Requires 2 passes by compiler :

1.Compute (virtual) register demand for each operand

2 . decide order of subexpression evaluation & emit code

How are expression operands -> Variables '

handled ? · In memory (AR ; labeled area in data l

· In (virtual) register
-> Constants :

· labeled area in data

8 2 mmediate values

-> Procedure calls :

· postreturn sequence puts result in appropriate location

z

Subexpression evaluation order cannot be reordered around procedure calls

What languages allow some mixed-type expressions Leg int + float)M values (uka the result of a subexpression) : in a register

Operands1 Compiler converts operand(s) to the appropriate type

-> In compiler - time conversion
, compiler looks up conversion rules & applies them at

the point of emitting code

-> In Run-time conversion :

D compiler adds type tag to value

g runtime case analysis jumps to appropriate subroutine for mixed types

How does the compiler handle a = b + c

assignments ? -> For RHS leg b + c) : expression evaluation ; result is a value ; compiler emits code

LHS Leg 9) : evaluation to access a value

D result is a location leg addr where a is stored

compiler emits code to move RHS value to LHS location

- A -

How are values kept in -> RECALC : values Kept primarily in registers : Scalar
, unambiguous ,

& temporary values

registers accessed ? - IR may assign register-based values to virtual registers

iskers can be read & written to in the same cycle

->
Ideal : values kept in registersWherever they are used frequently

· optimization ,register allocation

memory accessed ? ·

ambiguous names

· name, that have global visibility
· names that have static lifetimes

-> IR represents the name with its coordinates

· lexical level (e .g. global = 0)
,
& offset

-> Type info in the IR is needed for emitting correct operations

Which values are kept on the -> Local values

Stack ?
->

Spill values from registers

->Storage allocated in the activation record (AR)

How are values kept in

I
-> RECALL : values kept primarily in memory :

-> These values are referenced by offset (to ARP or SP

How are variables of surrounding -> E . g.,
values from enclosing lexical scopes (excluding the global scope

scopes accessed? -> IR represents the name with its coordinates (lexical level
, offset

-> compiler emits code to traverse the chain of scopes

How are static & global vars accessed? Compiler emits code to access using the label

How are parameters accessed ? - Compiler emits code according to the ISAs linkage convention

How are values on the heap - Virtual address must be maintained

accessed ? · in a register · On the stack

· as a field in another heap-based entity
- Accessing Aggregate Data Structures-

What are the memory access
-> load word : Iw rdimm(rs1) ... regards = mem(reg (rs1] + imm)

instructions in RV321 ? · loads (bytes (16 bits) · Immediate is 12 bits
, sign-extended

-> load word pseudo-inst : In rd label

-> load byte : 1b rd imm (rs1) ... regards = mem (reg (rs1] + imm)

· loads 1 byte , sign-extended

-> load byte unsigned : 1bvrdimm(rs1) ... same as 16 but loaded in byte is

zero-extended

-> Store word : sw rs2 imm(rs1)

-> Store byte : Sb rs2 imm(rs1) ... stores LSB of rs2

RECALL : What are aggregate -> Structs
,

class objects ,
Vectors

,
multi-dimensional arrays

objects ? -> Accessing indiv
. elements of the aggregate : accessible via start addr of the object +

How are they accessed ? offset within the aggregate
-> Elements have individual type information

How are struct elements accessed ? -EX : Struct Ex & intx ; inty ; 3

2.
St lookup to find start address

·Strict's storage class determines location : local AR
, enclosing scope , static/global

label
, or heap

2
Emit code to put start address in register , eg la to struct 1

3.
ST lookup to obtain element offset & type

↑
EmitLode to add offset to start address

, eg addito to ↓
,
for inty

5
:

Emit load operation(s) ... use type info to select appropriate instructions

How are object members 1.
S lookin to find start address

accessed ?
·

Object record pointer (ORP) is associated with the object's source-language
name

2
Emit code to put ORP in register

3.
ST lookup to obtain object member's offset & type

*
Emit code to add offset to OR's start address

5
:

Emit load operation(s) ... use type info to select appropriate instructions

1.
How are vector elements S lookin to find start address & element type

accessed ? · rector's storage class determines location : local AR
, enclosing scope , static/global

label
, or heap

2
Emit code to put start address in register

3
Emit code to compute offset in Vector

*
Emit code to add offset to start address

5
:

Emit load operation(s) ... use type info to select appropriate instructions

Example for vector elements ? - * Vector (0 : 9] ...
aO holds the address

of V and at holds the index i

addi+1 zero y ·

more length of each el
. into +1

mul to 21 +1 ·

to = index & size of el.

add aO aO to · aD = base addr + offset

Iw to 0(a0) for 2tB arrays

·
How are multidimensional -> RECALL : 2 ways to store : row/col-major order

,
OR indirection rectors

arrays accessed ? -> Num
- of mem . accesses for each type is different ; indirection rectors can

be slow

· Mem. access is expensive compared to calculations

from

&
'Storage

Layout'
lea

·

May be harder for compiler to take advantage of locality
RECALL: What are indirection -> Innermost level is a set of vectors containing data elements

vectors ? -> Outer level (s) are a (set of Vectors containing pointers to the next innar level

How are arrays as parameter -> Different call sites might pass arrays with different dimensions

arguments handled ? ->Callee needs dimension information

-> passed via a Dope Vector
,
which is a fixed size & layout and contains a

descriptor for the array
What are range checks ? - Test that the given array index falls within the allocated range

-> Range checking is determined by the language design... either :

· compiler does check statically
· compiler builds code to check dynamically
· compiler does no checking (e . g .

C ... there are buffer overflow &

other security vulnerabilities)
- Boolean & Relational Operators-

How are boolean & relational -> For specifying control flow
,

e . g .
conditionals & loops

operators used ? -> HW Support : assembly instructions for comparing , performing boolean ops

Le . 9 . AND
,
ORL

, and acting upon the result (e . g . beg ,

bre
,

bit
, be

What is short-circuit evaluation ? -> Evaluating a boolean expression only until the result is determined

· e . g. for if (a < b) &&<<< d)
...

if (acb) evaluates to false
,
then

(c < d) Won't even be evaluated

· If operand is False/true for an AND/OR operation ,
2nd operand doesn't

need to be evaluated

-> Evaluate the operand that requires fewer operations first-aka
,

the more

shallow subtree in an AST

- Control- Flow Constructs -I -> Block starts with labeled statements & the fall-thro instruction of a branch

What is a basic block ? -> DEFN : Maximal - length sequence of straight-line ,
unlabeled

, unpredicated

instructions

-> Control-flow transfer ends the block

-> Labeled statement ends the block (assuming label is a possible target branah

How is an if-then-else section -> Build the basic blocks (if block
,
else block)

,
then insert instructions to

constructed in assembly ? implement the control flow .

La :
statement that checks

-> E . g .: ↓ Sea ,
he , ge ,

It 3 rsI rs2 Loo for opposits my

condition ; if condition

if (condition] & # code for block 1 False
, jump to blocky

.

block
y & jal zero Le Else

, execute block
,

3 else block 23 Lb :

3 block
y

code for block 2

LC :

* Lode for block 3

What logical & branching ->Sit
,
siti

, beg ,
bre

, bee ,
bit

instructions does RV321 have ? - jump and link : jalrd label ... Sets rd = P2 + &
,

then sets PC = PC + offset

Leg offset given by label) ... label is 20 bits

What instructions can be used
-> Sample Code :

if (a + b) E

X = c + d]
to avoid branching?

-> NOT in RISC-V
,
but:

21se(x = 2 + 53

· conditional more operations : more the value in one of 2 registers into

dest reg ,
based on condition

, e . g ., for sample code above :

add to rc rd

add +1 re re

sit +2 rarb

mucon rx +2 to + 1

· predicated operations : instr
. executes or not

,
based on the condition

,e .g
.:

Sit to rarb

Xori + 1 to 0x01

addegz +1 rx ra re

addegz to re ref

What are condition codes ? -> Provide detailed results from comparison instructions

-> E . g.,
in x86 : -zer Flag : result is 0

-

Sign Flag : result is negative

-

carry Flag: a borrow was needed Consigned

~ overflow flag: an overflow occurred (signed

-> Enables a variety of branch instructions

What are loops (high level) ? -> Perform iteration
,

w/ common features being :

· Initialization · conditional · update state used in guard

-> In the basic case leg no nested loops) : One initial branch +
one branch per iteration

How are for loops implemented -> e . g.
For (expre ; expre ; expr3)E 2.

evaluate expr1

in assembly ?
// loop body 3 2.

if NOT(expr2) go to no .
5

/post loop
3.

loop body
-.

evaluate expr3 .

If expre go to no . 3

S .

post-loop

How are while loops implemented ?& Similar structure to for loops

-> condition expression ,
but no initialization

-> double test loops are better

What are until loops ? -> Guard is at the end of the loop body (execute until guard is true

->Execute at least once

-> more compact than while loop

What is a fail call ? -> A call that is the last statement in a procedure

What is tail recursion ? -> A recursive call
,

that is a tail call

- Optimizations allow eliminating much of the procedure set-up & tear-down w/

tail recursion for iteration... allowing resulting code to be as efficient an traditional lorp

How are break statements handled? - Compiler emits immediate jump to labeled breakpoint ,
or labeled start following

the loop or case

How are skip/continue Statements -> Compiler emits immediate jump to code evaluating the loop condition

handled?

How are case statements -> Basic case : evaluate the controlling expr ,
branch to the selected case

,
execute the

handled ? Code for that case

-> Break struts exit the 1412 . Otherwise
,

end of exec of a case falls through to the

next case

->

Challenge : efficiently branching to the selected case

·Compiler uses value of controlling expr to locate the corresponding case

What are the methods for -> Linear Search

efficiently branching to the selected -> computed address
case ?

-> BinarySearch

What is linear search ? -> Implement the case as a series of nested if then-else statements

-> cost of branching to correct case depends on order of cases

·Compiler should order cases according to estimated execution frequency
-> Works well for small number of cases

What is computed address ? -> Compiler builds a jump table,indexed by case : Vector of block - address labels

-> Efficient when case labels form a compact set

What is binary search? -> Compiler builds ordered table of case labels + block - address labels

-> compiler emits binary search :

· find the right label branch to associated block addr

-> Useful when : num
, y cases is small and /or label set is sparse

How are string operations -> string length : null-terminated storage ,
or explicit length storage

handled ? - String assignment : HW support for byte-oriented mem - operations is Useful

- string concatenation :

·

appending = string length + assignment
·

new string = 2 assignments

Instruction Selection Ch. 11

RECAP : Where are we now ?

source Front IR

Optimizer
ER

Backend - targetprog End
program

compiler
-

(Ch .S]
Scanning (Ch .

2) vf (Ch .6) - &

instr.
selection (Ch11) -&

Parsing (Ch .3) ~A

Semantic An. (Ch .5,
6

,
7) vf ((n .

8 , 9
,
10) &

Reg-allocation (Ch . 13)

instr- scheduling (2h-12)

Todays topic !
Chap ter Content

5 Namespaces
, Naming Enr ., Type Info

,
SDT

, Storage Layout

6 Procedures

7 Code Shape

What is the role of the backend ? - Optimizer has primary responsibility for efficiency
-> Backend also plays a role :

100k

I
ram

I I I I &
I

& Instruction Selection : local mapping from optimized IR to ASM

& Reg. Allocation : mapping Virtual Registers to ISA ones (TM)

↑
· Inst . Scheduling :

scheduling of ISA Inst
.

S on target machine functional units

What is instruction selection ? -> Rewrite IR code into TM's ASM Cassembly

-> Challenge
:

many possible ASM implementations for each IR statement

-> Goal : efficient
,

local rewriting
-> EX : X = I

could turn into
addi to $01

or
add to $0 I

I .
S. Y = I add +2 to $0 sit +1 t0$0

etc.

↑
What is the instruction selector -> Aka backend generator, code-generator generatur

generator ? -> Compiler writer produces specifications : IR
,
ISA

,
& mapping blw them

-> Then
,

backend generator (BG) builds inst . Selection engine for the given specs

Csimilar to how parser generators work

-> Basically
,

instruction selection must take IR representation (s) of a piece of code-

like un AST and/or ST - & produce assembly language program.

What is our running example? -> a = b - 2xc
,
where : a = local var in AR

,wI base addr = ARP & offset = ↓

b = call-by-ref var in AR
,

wI base addr = ARP & Offset = -16

c = global var,
wh base addr = label "GL" & Offset = 12

What would its IRs like ?

What is our running example? - a = b- 2x c where : a = local var in AR
,wI base addr = ARP & offset = ↓

b = call-by-ref var in AR
,

wI base addr = ARP & Offset = -16

c = global var,
wh base addr = label "GL" & Offset = 12

What would its IRs look like ? - Ast:
-> Table of gradruples :

& Result Arg
, Arg2 Op

g O I to 2 C X

VAL

I ②
CARP)
O ⑳ N

Nume
How would the I .S · use these -> Linear IR Le .s . quadruples) :

IRs ? ·I ad pattern materingI
CARP)· A b to -

· based on peephole optimization

-> Tree-based IR Leg AST) :
pattern matching on trees

- Peephole Optimization -

What is peephole optimization ? -> Oneapproach to inst . Selection

-> Using pattern matching over short inst
. Sequences to find local improvement

> Traditionally compiler's last pass - aka
, reading & writing ASM

-> Idea :
"O

Translate IR into lower-level (R (CLIR)

2)
systematically improve LLIR via peephole optimization

30
Map optimized (LIR to +M instructions (ASM)

-> Basically ,
the compiler examines the code in small adjacent/overlapping sequences/

windows. In a given window Isl Sequence
of code)

,
it examines the operations in

-

this window
, looking for specific patterns that it can improve . When it recognizes

a pattern ,
it rewrites it w/ a better instruction sequence .

op timizations ? -EX : a store & then loado the same value : Swo Bcsp) >Examples of peephole

ppo Iw 708(sp)

sw to 8csp)
-> P

.
O

. can replace the load w/ a copy inst ,
which is less expensive : mr +1 to

-> EX :
unnecessary branching : jal zero La

g
jal zer Lb

jal zero Lb

What are the phases of PpO ? IR & Expansion
LIM

& Simplification LIRg Matching CASM

L
↓ I

IR into LLIR
·

Sliding window' of 2-1 instructions ·

Library of patterns
·

Ruallthe me
a · Top-down rewrite :

· Top-down rewrite

- forward substitution · Final ASM (that may use

·

Bottom-up rewrite (calculate
- algebraic simplification virtual registers) :

liveness information) - evaluation of constant-valued exprs
- preserves all vals in LLIR

I - elimination of dead effects (mem
, regs,

condition

codes)

- S1 PpO : Expansion -

What does the IS do during
-> Rewrite IR into an LLIR

, capturing all memory details
... Bottom-up rewrite

expansion ? -> Template-driven : Expander uses a template for each IR op ,
& substitutes appropriate

reg names , constants
,

& labels in the template .

-> Expander rewrites IR
, op by op ,

into a sequence of LVIR ops that represent

all the direct effects of an op. Result Arg
, Arga Op

-> GIVEN : The linear IR For
a = b- 2xc : to 2 C X

Exampleofthe
LLIM that expanseset

->

Resulting LLIM :
A b to -

ro - DCP

r4GL

24 ro + r
,

2
3 < Mem (r ,2) Obtain base addr for C

,
add offset

,
load val of this addr

-
+

, 8412 ITsur, j
+ r

, 3

"
6

Mem(r,

r + 2

84,,xVyar
, z

= 2x

~
no

& nap-r , ,

Obtain base adde for b
,
add of feet

,

lead val &f this add
r

, a
+ 16

J521
& Mem(r20

24 Mem(r2,

~
23

-
22

- T8 m r2y = b - (2x)

I -24 J

IEs Tarp + Thy store res at as loc in memory

Mem(res] &
23MWhat is last use' ? reference to a name legarey holding a certain var/value) after which the value

represented by that name is no longer 'live' (used
1: to 2

We could easily simplify this to addi +1 zero J
.
BUT, expander cannot eliminate

the first op .
Unless it knows that to is not live after its original use in the second op.

How does the expander mark
-> Compute Live Out sets for each block ; then

,
in a backwards pass over the

last use ? block
,

track which vals are live at each operation

are live at each operation.

How is the LiveNow set -> Initialize Live Now with either all of the names used in more than one block,

computed ? or the Live Out set for the given starting block .

-> Then
,
while processing each operation ri < &j Op Us update LiveNow by :

10

removingr,
From it

2

adding rj and i to it

-> RESULT : aly produces
,

at each step
,

a LiveNow set that is as precise as

the initial info used at the bottom of the block .

-IS PpO : Simplification -

What does the IS do during -> Sliding Window : considers 3-1 instructions at a time

Simplification ? -> Pattern-match to identify simplifications :

·Forward substitution
· algebraic simplification

8 evaluation of constant-valued expressionsa elimination of dead effects

-> &mit simplified instructions ; discard dead instructions

-> Basically , Simplifier makes a pass over the LLIR
, examining

the ops in a small

Window on the LLIR & systematically trying to improve them.I
subi to +18

& mul +y +1 + 2

What is forward substitution ?" Substituting defined values into uses later in the window

-> Example :

la is L] la is (1

li "
6 12 &

Iw rg12(rs]

add - gre

In ro O (v)

-> Rather than defining 212 + (1) as a new value
,

we can directly do a load word.

What is algebraic simplification? - Using algebraic identities to simplify ·
e - g .:

mul +3 to +2

-> Algebraic simplifications to look for :

·
a + 0 = a a x1 = d a && a = a ax1 = a + a

a - 0 = a a x 2 = a + a a 11a = 9

a - a = 0 a/2 = a a - 0 = a

ax o = j ala = 1 a 0 = a

What is constant folding?
- Evaluate constant-valued expressions & substitute the value

li re 2

add is re re
S addit zero

How does the simplifjer
-> Simplifier can only eliminate defining operations if the defined

-> Simplifier uses the Live Now computation from the Expander

Example?

li= 2

· LN : D

& · LN : [ry3

add -2 Ts
A

What would our example (LIR
ris & O CP

look like after simplification?

see

eliminate dead operations ?

I
value is dead

· LN : [rz3

in & Mem (e(p + &6)

-12

To
j

+ r
, e

ris Mem (r
, y

+ 12)

Vis Tz4r, n
+ T

~ Mem(r, &

2,

r Mem(Varp-16)

· in "Mem (r21)
& r

, <X
+

, 6 123) 122 - +z
r

, a -16 Mem (Tarp + 1) < ↳
23

-20 & Tarp-r , 9

-2 & Mem (r20]

-22
- Mem (52,

]

52u -
22

- V
, z

-24 J

Es & Tamp + T2d

Mem(res] &
23

- IS PpO : Matching -

How does matching work ? I -> Matcher compares simplified LLIR against the pattern library , looking for the

pattern that best captures all the effects in the LLIR

-> Some operations are a one-to-one match ; others may require multiple ISA

tructions for one (LIR inst
.

(this may introduce temporary namesins

Mat-> cher must know :

· size of constants · available memory operations
· address modes

- IS via Tree-Pattern Matching-

RECAP ? -> Peephole Optimizations use linear IRS to do instruction selection

-> Another way to do IS is using tree-based IRs
,

like ASTs (which can be an LLIR)

-> Example AST : : I For a = b- 2xQ
②

X&
I meF⑭ O
E

I ⑭⑳
⑮

What is an operation tree ? - Free - representations of operations in target ASM
.

e . g
.:

&I
G O
add r1

,

21 =) r3

What is the library of free -> Rewrite rules ; each pattern maps constructs in the IR to operations in target

patterns? ASMI I

value type

r]

⑪

Nue I

-

wi

-> Each pattern contains :

· low-level IR pattern tree
· cost

~ ASM code template

What is tiling?
-> a Tile is < X

, >
,
where :

· X is a subtree in the AST

·

Y is a tree pattern from the Library of Tree Patterns

· pattern y can implement the subtree at node X

->

iling : a set of tiles that implement the AST

· covers every
mode in the AST

· overlap between any I trees occurs at a single node

·
where I pattern trees overlap , they agree in storage class &

·

root of each pattern tree overlaps a leaf of another pattern

tree
,

unless it covers the root of the AST

What is the goal ?
-> Find a locally optimal tiling
-> Triangles represent tree patterns : each has an associated ASM code

template & associated cost

②
g

⑭
⑭ ⑭⑳⑪

-

wi
I

⑮
How do we describe an LLIR -Write the up. tree for add

,
for ex

,
as :

AST using prefix notation? +

/ 9 + (Vi , (j)Y
ri j

-> combine them all .
Ex for the AST above :

· = (+ (VALARP) , 5)
,
-)-(VALLARP) , 16)

,

X (2 ,
+ (LAB(g1b1), 12())

Register Allocation

How does register allocation
2.

Determine
,
at each point in the code :

work? ·

which values reside in registers
·

which values reside in memory
2

Rewrite the code to implement the allocation

·

spill & restore values when there are too many live values

·

keep ambiguous values in memory
RECALL: What are registers ?

-> Defined by the ISA

->Provide fast access bi physically on the CPU
,

and no address

translation

What is register allocation ? -> Input : IR program that is nearly executable ASM
,
but uses an arbitrary number

of virtual registers
-> Output : equivalent program that Fits into the ISA's register set

·

alla executable ASM

-> Can be followed by :

· instruction scheduling
RECALL : What is the register - -

> IR uses as many virtual registers (VRs) as needed

to-register model ? -> Register allocator maps VRs to physical registers (PRs)

What is the memory-to-memory
-> IR establishes a home memory location for all named values

model? -> Register allocator can promote a value to a register for a longer range of

its lifetimeI
3.

·

assumes analysis begins with no values in PRs

What are 2 methods fore Local register allocation :

register allocation ? ·
each basic block analyzed independently (szope o analysis = basic block (

·

a single class of physical registers (PR) is given

*

namespace for values : Live Range
·

key algorithm : compute most distant next use to determine spills
-> Global register allocation :

·

each procedure is analyzed as a whole

·

may be multiple classes of physical registers
&

key algorithm : uses graph coloring to compute allocation

·

namespace for values : Live Range
How does local registera Build a new namespace of Live Ranges (LRI

allocation work ?
2.

perform register allocation (calculate interference; generate spill code)

Rewrite the code using the namespace of physical registers

What areLive Ranges ?
-> DEFN : A closed set of related definitions and uses that serves as the base name

(LR)
space for register allocation

-> Each LR corresponds to a single value

· from the value's definition

· to the value's last use

->
In a basic block , each LR

· starts with one definition

· extends until that definition's last use

-> An LR starts : with the first operation after it is defined

· differentiates biw a use and a definition in the same operation

-> An LR ends :

· at last use of the name
,

OR

· when the name gets a new value

What is liveness ? -> A variable v is live at point p if it has been defined along a path from the

procedure's entry to p ,
and there exists a path from p to a use of

v along which v is not redefined.

-> Anywhere thatv is live
, its value must be preserved because subsequent

execution might use V.

Example? ~ For a = a x2xbX2Xd
,
we have this IR block

,
and each distinct

live range in the block :

Register Interval

I
r [1 , 21]Yarp

& Mem(Amp
arp

r
a

- MemsTarp t offset) ra [2 ,
7]

3 r " 2 [7
,
8]

ra

↓ TnaMem(B) ra
[8 , 9]

S rc4 Mem() M
a

29
,
10]

6 ra & Mem2D) Ta [10 , 11]

7
ratrax Tz M

2
[3

,
7]

8
rurax Tb rb 28

, 8]
E

ratraX
ra 25

,
9]

18 ratrax ra
~

d
26

,
10]

11 Mem(A) ra

-> basically ,
a rey's LR is the interval over which it represents (O is used us) a

given value. E
. g., ra has an CR From (2

,
73 bla line 7 uses the val from operation

diff
2. Op . Buses the value from Op .

7 (rather than Op .
2)

, So , wa has an CR from (7
,
81

more about LRs ? - A reg ,
allocator doesn't have to keep each distinct (M"in the same reg...

it can treat each UR in the block as an independent val for allocation

& assignment. For ex
,

the 220c ex from prev page could become :

Iw ra@a(sp)

In r @bcsp)

In rec(sp)

Iw ed(sp)

mul re Va 2

mul ta y r
&

mul -g rz Ta

in local RagAlloc ,
2 LRs

mul -s -z interfere if their spans

Su ra(sp) ↑I
addi re nero 2

overlap

for one register ,
e . g. Ta

What is interference ? -> 2 LRs interfere if there exists an operation for which both are live and

they (probably) don't have the same value .

> Two LRs can share a physical reg . i . f .
F

. they do not interfere
,

and use

the same PR Set
... 2 LRS Using distinct PRs cannot interfere

· in local Reg Alloc
, all CBS use the same PR set

- Local Register Allocation -

What is Best's Algorithm ?
I.

Compute live information (bottom-up pass)

2. Add interference info (top-down pass(

-> Idea : Most distant next use

-> al a store in mem

· spill the PR with the val whose next use is Furthest in the future

· reduce demand for PRs over the longest interval

-> Optimal choice if spill costs are uniform (in general tho this isn't the case)

What are non-uniform spill costs? -> Dirty values
,

clean values
,

rematerializable values

What is a dirty value? -A value that does not exist in memory
· STRAT : Store at spill points (out of registers (7))

,
load at restore points

What is a clean value? -> A value that is already in memory

· STRATEGY : load at restore points

What is a rematerializable + A value that can be recomputed at each use

value? · STRATEGY : recompute at restore points Le .g .
load immediate operations)

How are the live ranges
-> Maintain 2 maps :

determined ? ·

VR toLR : initialized to INV For all virtual registers (VRs

-> VRIOLR(x] = y means that the curr. val in register X belongs to LR Y
· PrevUse : initialized to inf For all VRS

-> maps virtual register to index of closest future use

-> PrevUse(v) = the next inst
. that uses VR V (while scanning

bottom-up)
.

-> Bottom-up Pass

·

visit definitions first
,
then uses

·

update maps

· Fill in the LR and Next Use (NU) fields

What would this pseudocode For each operand of the inst
.

:

look like? for each op defined :

if vRtoLR Cop . VM] == INV
,
then URELR[op .VR] : = next LR

op.
LR = VREOLR(op .VR

up . NU = PrevUse [op . VR]

Previse Cop .
VR] = inf

VRtoLR Cop .
VR] = INV

For each op used :

if vRtoLR Cop . VM] == INV
,
then URELR[op .VR] : = next LR

op.
LR = VREOLR(op .VR

up . NU = PrevUse [op . VR]

for each op used :

PrevUse Zop .UR) = index of current instruction

S how are registers -> Process uses before definitions

assigned? - For each operation :

%

For each use
,

look for an existing PR assigned to the LR

a. Maintain CRTOPR map

b. Call get PR if new PR is needed

2

Determine if a use is the last use of the LR

a
if so

,
free the PR

, making it avail for reassignment
3.

For each definition
, assign a PR to the LR

a, call get PR

b update the LRtoPR map

How would the getPR function
&

Find a PR for a reference v

work ?
~ If there exist free PRs

,
use the next available (maintain a stack of Free PRs

3.
Else

,
choose an LR to evict from its PR :

· spill the LR val to mem/stack

·

reassign the PR to v

· if the ref tor is a use rather than a definition
,
restore its value from

its mem . location
,

to the newly assigned PR

RECAP : What are the steps
10

Translate to namespace of live ranges

for RegAlloc ?
2

Identify interferences biw live ranges
30

Find an allocation

-8
Decide what to spill

What is the "Max Live" value?- Maximum demand for registers in a basic block

-> Given by the max
. num - of concurrently live ranges

-> If Max Live is greater than the num- o PRs
,
a spill is needed

- Global RA-

What are the challenges with -LRs have multiple definitions & uses

local RA ? -> RA must coordinate across basic blocksI -> Spill cost estimation must account for blocks that execute multiple times

How does global RA work ? 1. Find LRs

2 -

Build interference graph
3-

coalesce copies - loop to step 2

↓
Estimate spill Lost -

5 .

Find a coloring
6.

Insert spills-loop back to step 2

Optimization

program End
program

compilerI I I I &(Ch .S] ~

Scanning (Ch .
2) -f (n .5) - ~

instr.
selection (Chl)

~

Parsing (Ch .3) ~A ~

Semantic An. (Ch .5,
6

,
7) vf (n .

8 , a
,
101 -& Reg-allocation (Ch . 13)

Todays topic ! Instrscheduling (Ch.1) - v

What are the goals & Process + Goal : improve performance of compiled code

RECAP : Where are we now ?

I
source Front IR

Optimizer
ER

Backend

&

- target

inOptimization? -> Process : Analysis ,
Transformation

What are the considerations ?
-> Safety : transformed code produces same results as original code

(trnsFm)
-> Profitability : transformation improves performance

-> Risk : Trusfms intended to improve performance can make it harder for the compiler

to generate good code

What are the different scopes+ Local : one basic block

where we can perform optimization?& Regional : a subset of the CFG

-> Global : one procedure

->

Interprocedural : 2 or more procs
- Local Value Numbering-

What is the "local scope" -> A single basic block = scope for local OPT methods ; so each basic block

exactly?

RELAC2 : What is a basic block?
- RECALL: basic block = maximal-length sequence of branch-free code

·

Starts wI a label or fall-through instruction

· Ends with a branch or jump

· Instructions execute sequentially

· If one inst .
in a BB executes

, they all do

What is Local Value Numbering -> A type of local optimization for eliminating redundancy
CLUNS ? -> Finds & eliminates redundantly computed expressions :

·

exprs previously computed in the basic block
,

AND

·

exprs where no operands have been redefined Since 1st computation

Examples of redundant expressions?
can b + c

by a - d a - b + c

2 b + c-orepeats line I
&& b

22 is redundant bla we could

d - a -do repeats lineI

e-d + c
I

just do "eyb + 1"

What is the algorithm for Traverse block top-to-bottom
,
and map each value to a distinct number

LVN ! Leach "value" each operand or expression)

->Two vals map to same number i .F .
F . they are equal in all possible executions

-> Use a hash of each val to index into the mapping table (or use a dictionary
What is the pseudocode ? -> Start with an empty hash table mapping value names to their distinct

numbers/IDS :

HT =
Val number name

-

- ---

num = O

For each instruction TC (Op R :

UN
1

= get Number (2)

UNr = get Number /R)

if <VNa
,

Op
,
UNr) is an entry in HT :

find the number

X = get Name (< UNz
,
Op ,

UNR>)o · that <VN-
,Op,UN pL

is assos
. With

,
ala

UNx = getNumber (< UN-
,
Op ,

UNRL]
HT [IVNc

,
Op,UNR3].

if getNumber(x) = = VNx : Then
,
find the other

rewrite instruction to be "T x" entry in HT that has

the same number .

-

else : the key for this

set the "name" associated w/ the same entry-also the other

name sharing that num-

value
,

< UN-p ,
UNR> Cake name whose is returned

value = value for < NN1
,Op ,

UNm> entry

to be INVALID

else :

HT[<UNy
,
Op

,
UNR> J = num

numt = 2

UN += HT [CUN-
,
Op

,
UNr3]

HTCT] = UN +

def getNumber (operand) :

if HT operandS : // if entry in Hi alr exists for this value

return HTCoperand]

else :

HTCoperand] = num

num + = 1

return HTCoperand]

Example walkthrough?
&b +a HT : num name

by a - d

% b

24 b + c 15 2

dua -d (d > b
2 0 + 1

2 a

By d

J 2 - 3

5 - + 1

20a -b + 2

· create new entries For b & a + HT[b] = 0 and HiC] = /

·

create new entry For "O + 1" - HT20 + 1] = 2

·

creake new entry for a, Samenumas "Ot1" CHT(a] = 2

2-
b < a - d

· create new entry For d + HT (d) = 3

·

create new entry for "2-3" - HTS2-3] = &

·

set HT (b) = HTC2-3] = J

3.
c + b + c

· create new entry for "T + 1" - HTC + 1 = S

·

Set HT(c] = Hi (d + 1] = S

&

da- d

·

entry already exists for "2-3"

· X = getName (2-3) = entry where num is 1 = b
·

VNy = · get Num(x) = J

· rewrite instruction to : d b

· sel HT (d) = HT [2-3) = J

How can the LUM algorithm be -> Commutative Operations -> Algebraic identities

extended for more optimizations ?
- Constant folding

How would the LUN use
T Constant folding : Store values for constants

,
rather than names.

constant folding? ·For instructions (that are operations) where all operands are constants
, (VN can

evaluate/perform the operation ,
& then replace the instruction with a load imm.

inst .
that loads in the evaluated result .

· Ex : a +3

I S
Rewrite (2 using

as 3

Jb)a + 2
constant folding b) 5

How would the LVM use
· Commutative operations : ensure that operations that are communitative

, eg

commutative operations ? axb and bxa
,
receive the same value numbers/ are treated as the same value

How would the LUN use
· Algebraic identities : Keep a dictionary AID of algebraic identifies that the LVN can

algebraic identities ? apply to simplify the code
,

e . g .:

·mul 0 x a

a

= a

· here
,
each "simplified identity" represents an operation which is equivalent to its

corresponding Expr ,
BUT is simpler/faster/more efficient

.

For ex
,

Sub ba$a

is equivalent to but less efficient than doing li $b0x

~ For each instruction T
,

& L
, Op Ri

,
ilzwake the all the entries in AID where "operator"

is Op . If any of the Exprs match the instruction
,

replace the instruction with the

corresponding simplified version.

-> performing (VN Over an IR in SSA prevents lost valves

- Static Single Assignment (SSA) -

What is SSA form? -> Linear IR + Namespace ; encodes Control Flow & value flow into names

~ Each name corresponds to one definition point in the code

·

each defn
.

has a distinct name

·

each use refers to a single def.I
· the -function basically allows compiler to choose which previous definition's

How do we translate a Linear IR - At each definition
, generate a new name-e . g ., by adding a subscript :

into SSA Form? a - x + y a +X
,

+ Yo

b4 x + Y & by + X
,

+ Yo

a - 2 a
, 42o

& At each control-flow join ,
add a -function-a "fake" instruction that

lives at the top of a basic block that has multiple predecessors

value should get assigned as the value of a new defn
.,

when that value is

dependent on the control Flow that led up to it.

->
Compiler inserts Q-functions at points where different control-flow paths merge ,

and it then renames variables to make the single-assignment property hold.

How do the -functions -> At control-flow merge points , a var may come from differing previous definitions

work? depending on which path was taken

-> The O operation selects which prev -
defn will be used

.

small example? -> EX : a+ P(x
,

x2)

· When execution enters this block
,
if we came from predecessor 1

,
then a

Shid take the value of X.. If we came from predecessor 2
,

then an should

take the value of X
2 .

-> SSA attaches each argument of the O to a particular incoming edge in

the Control-flow graph (CFG) ; the Q-function selects the arg . corresponding
to the CFG edge just taken

How would we turn a while -> Example linear IR :
-> CFG :

Bi

block into SSA Form ?

:FB
Whilex < 100

While (x < 100)

X + X + 2

J- Bz (b
y8y + x

... (Bz)

-> There are 2 merge points :

·
Top of the loop body

,
where control could either enter from above (e .g .

the

First iteration)
,

Or from the bottom of the loop , when starting next iter.

20

The block AFTER the loop ,
where the val of X could either come from

the while loop
,

or the prev block if we never entered the loop

-> SSA encoding :

You ...

You ...

bge x
,

100 continue

Loop :

*
* 2X0

,
/2)

Y
,
44(40 , Ye

X2 - X
,

+ 1

Y 24 Y
,

+ Y
2

Continue :

Xz5 &(40
,
42]

Ye - 9(40 , 427

- Superlocal Value Numbering-
What is superlocal value -> An extension of LUN

, applied to a regional scope

Numbering (SLUN) ? -> The regional Scope = Extended Basic blocks (EBBs]

What is an EBB? -> A set of basic blocks [Bo
,
B

, ,
. . . Bn3 where :

· Bo = the entry node ,
OR Bo has multiple CFG predecessors ,

AND

· all other B
; have only one predecessor ,

which is in the set

-> If one instruction executes
, every prior inst . On the CFG path in the EBB also

executed

Examples of EBBs ? -> CFG :
↓

Bo

&⑳I (90 > bo) <B
, B2 u, = e

,
+f

How does SLVN work ? -> Apply (VN to paths through EBBs : treat each path thro an EBB as straight-

line code & Find redundancies that cross basic block boundaries

->
Challenge : eliminating redundant (UN Work

Example ? Bo: Mo = ap + bo Bj = e
,

= a + 17

no = 90 + bj +j = G + do

Ba :
Po = 20 + do

> Bs

ro = C + do Bs :

ez = q(er
,

2
,
)

B2 :

"Be ↑
z

= &(40
,
u

,
)

90 = 90 + bo Vo = a0 + bo

ry = 2 + do wo = Co + do

(axbo) - By
,
By Xj = ez + fo

By :
20 = bo + 18 > Be

So = as + bo By : +z = q(ro
,

r
,
)

Vo = 2. + Fo Yo = 40 + bo

> BS Zo = Co + do

What are the EBBs in this
- The CFG For this code :

example? -> EBBs : ..EBo
, Bi , B2

, By
,
Bj3 &

[B
,

3 By

[B43
· YBy

How would basic SLVN Work -> By treating each path as if it were a single block
,

& performing
On the starred EBB? LVN on each possible path.

- Possible paths : (Bo
,

B
,
)

,
[Bo

, Ba
,
By)

,
(Bo

,
Br

,
By

-> For each path ,
it would perform (VN on each block in the path

,
& then

Simply carry the hash table forward to the next block in the path

How would the basic Sudaly 1 . Createscope Le .g -, Hi) for Bo
2 -

work on this entire block ? Apply LVN to Bo-eliminates redundant no assignment
3.

Create scope For B ,: e . g., Carrying Forward Bo's HT ; apply LVN to B
↓

Add By to WorkList

5.
Delete B

,
's scope : e . g .,

revert changes made to 0 .g . Mr

From BowhenWea B
6 .

Create scope for B2 ; apply (VN to B2

1 .

Create Scope for & apply (VN to By
·

Add By to WorkList

9 .

Delete By's scope

10·
Create scope for B ,; apply (VN to B

,

"Delete Bo's scope
12-

Delete Be's scope

13 .

Delete BJ's scope

It Create scope for Bg ; apply LVN to B
,

is
. Delete By's scope

16 Create scope for By ; apply LVN to By

What are the drawbacks
17

Delete B's scope6

of this naive approach ? -

Analyzing basic blocks once per path = lots of repeated work; inefficient

What is a better approach ? - Basic blocks are analyzed once
,

and ValueNumber table is reused

· checkpoint state at BB boundaries to restore table's state

·

unwind effects on UN table by walking BB backward
,

Or

·
use linked list of UN tables & delete leaftables to start a new path

->

Requires SSA Form

Data Flow Analysis
What is Data-flow analysis ? -> A way of reasoning (at compile time) about the flow of values at runtime

-> Goal : analyze prog. in support of optimizations

-> Process : Iterative DFA

What is the scope?
->

global analysis ,
orFull CFG

What are the considerations? -> Precision
,

correctness
,

& termination

What is iterative Data Flow -> Iterative fixed-point algorithms where the fixed point exists & is unique

1-

8: N evaluate an equation
2

update the set defined by the equ.

3.

go back to step 1 until Fixed point is reached

- BENEFIT : Simple & robust

·

works directly on any valid CFG

Analysis ?

LDFA]

I
-> For each node of the CFG :

· guaranteed to terminate

why is precision important to -> DFA is a static analysis ; it may be imprecise ,
& transformations must be

consider ? Conservative

-> sources of imprecision :

·Control Flow

·

ambiguous references (analysis must assume any feasible value is possible (

·

reading from an external source (adds non-determinism to program
· external procedures

Why is control flow a source
-> Analysis assumes all paths through the CFG are feasible

of imprecision ?
->

Analysis is precise up to symbolic execution

Why are procedure calls a source -> Analysis must assume a called will use & modify any accessible variable

of imprecision ?

- Dominance-

What is dominance ? -> Given a CFG with nodes Ebo, ... bn3 where by = entry node,

node b
,

dominates node bj (written b, bj) if & only if

b
;

lies on every path from by to by
-> By defn

,
b, bi for all bi

-> Dominance = a tool used by compiler for reasoning about the shape & structure of a CFG

· important in construction of SSA Form

What is a DOM set ?
-> Each nodeb

;
in a CFG has a set Dom (b ;

)
,
which contains the names of all

nodes that dominate bi

Bo
Example of DOM Sets given ↓ · Dom (Bj) = EB

o
3

a LFG! · Dom (B
,
) = EBo

,
B

,
3

8 · Dom (B2) = [Bo
,
Ba

,
B23

· DOM1B3) : &Bo
,
Ba

,
B

,
3see ·

DOMCBs) = EBo
,

B
,

Bs3

· Dom < Bj = &Br
,

B
, By ,

B
,

3

· Dom < Bj) = [Bs
,

Bo
,

Bi
,
By

· Dom(B.) = SBs
,

Bo
,

Bi
,

B
, 3

By
·

DOM(B) = EBs
,

Bo
,

B
, By 3

What is immediate dominance? -> Given a CFG with nodes Ebo, ... bn3 where by = entry node :

& node b
, is the immediate dominator of bj iff :

-> b
, dominates by

-> bi is the dominating mode closest to bj
- b

= bj

· by has no I DOM

Example Finding I DOM sets
->From same CFG as above :

given a CFG ? node I DOM node ↓ DOM

G & S Bi

I Bo ↳ Bs

2 B
,

7 Bs

3 B 8 BS

J By

How does the compiler compute
->

I & domem&
Land DOM(bol = Eb

.
3

dominance
, conceptually ? DOM(n) = En3 v

me preds(n)

-> MEANING : For node n
,

Compute DOMIn) :

"Add Em3 to DOMIn)

2.
For each node that precedesn Le .g . every node by which m is reachable),

get the Intersection of the DOM Sets of each of those nodes
.
Add this

to DOM (n)

How is this computation/algorithm

implemented?

· Iterative Fixed-point ALG For a CF2 with INI nodes :

↑
initialize DOM(boS = Ebo3

~
For each mode b.....br

,
initialize DOM(m) = Ebo

,

b
,

... bn3

Cake
,
initialize each mode's DOM set as the set of all nodes

3 .

For i = 1 to INI-1 :

M
Domibi) = [b

,
3 v (be predsib) Domem)

↑
Repeat Step 3 until

,
for all i

,
DOM (bi) does not change at all Jaka fixed

point reached)

What is the proof that this

al considers termination?

DFA to accept "not" and "new" let X = errorstate Yay CompySS review !

5 : 950
,
51

,
52 ,

33
,

50
,
553

O

&: En ,
0

, +, e
, wa ⑱S

8 :

I
o + e W ⑳

->"
So

w
so S] ↓ * X X

X S2 * Sa X

52 X ↓ S3 X X
S

53 * = X X Y

38 X x55

ss x

*

x * x X

SoOm Identifier with one alphabetic
A... Z E J Char followed O or more

⑳ e alphanumeric
chars

let set X = a...
Z

A... Z

O
- 4

①8S Identifier with one alphabetic
.....

D J char followed by up to 5
A...Z

alphanumeric
chars

COLORS

· Main secondary + code blocks

· Main
secondary

⑳
·Main purple

·

Secondary purple

~ neutral purple

