
211 Review : Storing Datu in Memory By +e
Valve

How much data can be stored in 1- 1 byte jaka 8 bits Address

mem
,

addres s ? - The top row is "byte address O" 8 060000001 (5)

=What if you want to store an An int is size = O bytes ,
so it will Span I 0600000100(8)

integer ? multiple addresses in memory ! 2 Ob11111110(-2)

- y bytes
- ↓ addresses in memory.

- Ex : 329
,
821 = 060000000000000010000 01101100110

What is the Most Sig -> The leftmost byte of a number
,

2 .g
.

00000000
Little Endian

Byte (MSB) ? By +e
Valve

Address
What is the Least significant Byte? - The rightmost byte ,

e .g .
1100 110

1100 110

00000110

(LSB)

JWhat is LittleIndian ordering? - Where the LSB of an int goes in the 000
do,

first byte address
3 00000000

I I
-> AKA

,
fill the table from "right to left"g

· the last 2 nibbles of num -> Is address By +e

Big Endian

Valve
Address

· nibbles 386 - 2nd address

=

nibbles 2 & 2 - 8th address 8 00000000

10000016 /
What is Big Indian Ordering?

- Where the LSB of an int goes in theJ&
argest byte address 2 0000 0110

Which do we use in this class ? 3 1100 110
-> LittleIndian I I

How do you compute the
->I Index (element) x Size of celement type)) + base

-

address

address of an element in an

-> EX : An int
array

with to elements

array ?
& Each element requires & bytes/addresses

I

element O- address OXV = addr 0 /or whatever the base addr . is)

= element 8 - address 8x1 = addr 32

Diagrams to visualize
-> EX " arr = [5

,
90

,
100

,
60]

nificant

I
I

·
arrays ?

2 row = I byte 1 row = & by +es

Addr Da +a Data

↳ 0000 0101

2 5 :
3

5 98 Do
>

o 100 %
19

12 1000

i 28 %00o
15 Dodo 0000

How do we know how
many

-> It depends on the size of our total
memory

!

b its are needed to -> bits-per-addr = log(size of memory in bytes (

address our

memory
? - Ex :

·

Memory = 16 bytes... each address is log,(16) = &bits leg ,
addr 2= 0010)

·

Memory = NGB.

· 1GB = 230 bytes
·

each address is log(4 . 230) = 32 bits

· eg ,
addr 1 is 0000000000000000000000000000 0010 .

Digital Logic

I
output ,

What is a logic gate
? ~ A device that performs a boolean function to produce a single binary

-> Acts as a building block for digital circuits.

-> several types of logic gates ,
each of which represent a single logical

operator .

What is an "Inverter" or"Not" <Represents NOT logical operator

Gate ? -> Can be represented by a Symbol ,
truth table

,
or equation :

->
A DO Y Y = A O 2

10

Gate Symbol Equation Truth Table↑ Symbol Equation Truth Table A Y

What is an AND Gate ?

* - Y
Y = AB

A B Y

O ↳ P
or

Y = A + B
0 I j

D

Y
↓ ↑

What is an OR Gate ? =x
- y Y = A + B

A BY

0 E

0 11

Y i "

What is an XOR Gate ? - y
Y = A + B A BY

0 O

0 I

"
D

is o

-> Y is true when either A OR B is true
,

but not both .YOR" = exclusive OR .

What is a NAND Gate ? Y = Ax B A BY

or O ↳

-DoYein a
i

D iindicates Y = AB
⑧ I

↓

-> Y is true when (A and B) is false
... just negate the result of AB.

A BY
What is a

NOR Gate ? :o- Y
Y = A + B

0 !
0 I

Y %
->

Negate the result of (A ORB)

A BY
What is < XNOR Gate ? #o- Y

y = AB
0

!
0 I

⑧

Y i
I

-> Negate the result of (A XORB)

Logic Diagram

Form an equation from B

Example : How no you

- DID or

a logic diagram
? ↳

z Do

Equation

(AB x c + D) + E = (B)(p) + E

How do
you do the reverse ? -> Equation : Y = (A + B) CD

T Doy
How do you

form an equation
-> Go through each line of the table Where Y = 2 & create an equation

that

from a truth table ? describes it using AND statements.

-> Then, your final equation is the addition Laka QR) of all those equations
· "Sum of products" form

Example ? A B C Y

8 8 I > Bi = Y
08
:

Y = AB i + ABC + ABC

" !
> AB2 = Y

% > ABC = Y

I j

Transistors

- Basic Circuits-

What is voltage ? -> The force that makes currents flow !

->

Measured in Volts (v)

What is current ? -> The rate of flow of electrons.

-> Measured in Amperes (A)

Analogy to understand "A Dam with water & the top and a reservoir at the bottom.

voltage & current ? -> Voltage The desire of the water to flow downhill .

·

NOT the actual movement of the water . Voltage itself is static .

-> Current The actual flow of the water downstream
.

· The size of the opening affects the amount of water (current) that can flow.

· The widerthe "opening" ,
the higher the current.

What is a closed circuit? -> A circuit that is fully connected & allows electricity to flow uninterrupted.

-> When a switch (and circuit) is closed
,

we know the voltage on both ends of the circuit.

5V 0 8 SV
"closed" = ON

&

What is an open circuit? ->
A circuit that contains a broken connection.

-> ElectricityStops Flowing& point where connection was lost.

-> When a switch is open ,
we don't necessarily know the voltage at the end of the

circuit - We'd need to see the full circuit.I SV o D ??? "Open" = OFF

CX

What are switches ? -> Cont olled by physical contact. SYMBOL :

What is the symbol ?
- 000 or 0 ·

-Transistors -

What are transistors ? -> Like switches , but controlled by a voltage ,
rather than physical contact.

What "States" do transistors Just 2 States - ON or OFF
...

its binary
.

operate in ? -> This is why all machines communicate in binary (as and Os) !

On -0-0- OFF -0-a-
-

-

Wait... I thought you said transistors -

They are
,
but we can use binary terms rather than exact voltage levels for discussing

are controlled by voltage? them .

-> high voltage = "logic high" = logic 1 = I

-> low voltage = "logic low" = logic 0 : 0

⑳

What is the symbol for - The terminal labeled with the blue dot determines

transistors ? whether current can flow between the terminals labeled

with the red dot

⑧

What are the terminals 2. Gate : controls whether transistor is on or off

in an NMOS 2. Source : endpoint V I drain voltage

transistor? 3. Drain : endpoint VGo
(gate
voltage)

v
,

(source voltage

What does it mean if the a . K . a . "logic I"

gate voltage is high ?
-> Current can flow between the source and the drain ... they will be

connectedI will have the same voltage.

Example ? ->
e . g .,

if Us = logico , Va also logico . And vice versa.

vo(z) Vo (0)

i + 4 o + &
Vs(1) Vs(0)

What does it mean if the
-> aka "logic &"

gate voltage is low ?
-> source & drain are not connected ; current cannot flow

.

-> The voltage of the drain will be unknown
.

Vo - UNKNOWN Vo - UNKNOWN

+ 4 OR + 4-

Vs(2) Vs(0)

What is a PMOS -> same 3 terminals as with NMOstransistor .

Transistor ? -> The gate voltages are reversed :

· Gate voltage Low (logic = 0) = current can Flow

·

Gate voltage HIGH (logic = 1) = current cannot flow

How do we define the n Mos
pMOS

behavior of a transistor ? · behaves as an open switch
· behaves as an open switch

when Va is
low.

when Va is high
· behaves as a closed switch · behaves as a closed switch

when V
a

is high when Va is low.

What is Moore's Law ? - Atrend describing the reduction in transistor size in machines/computers
-> Moore's Law

:

The oftransistors in a given area on a chip doubles every 2

years
·

~2
,
000 transistors in 1970 -> > 10 billion today !

-> The trend is

coming to an end now
,

as the industry develops alternative technologies to

I

I
ntinve improving chip performance .

Building Logic Gates with Transistors & CMOS

RECALL : EX of a logic gate ? -> Inverter gate : A-Do-Y (Y = A)

-> see
pg 3 of notes.

What is power ?
> A component (of a circuit ?) that produces a logic high (1) value

-> Symbol : ↑

->
Always connected to output via a prostransistor.

· RECALL :

pros transistor is closed/oN When input = 0

What is ground ? -> A component that produces a logic low 20) value.

-

Symbol : ↓

->
Always connected to output via an mos transistor.

· RECALL : nmos transistor is closed/ON when input = 1

Visual example of an Inverter -> RECALL : Switches are a way to physically control the opening
& closing

with Switches ? of circuits
,
while transistors operate on logic values.

Power

impuls

it connecting ground to outa

Ground

-> When input = 0
,

we manually close the top/power switch.

input = 0 ?
-> When inpot = 1

,
we manually close the bottom/ground switch.

-> Since power produces logic = 1 & power is

n =0 connected to output
, output = I

How does this inverter work when I -1s Power= I

I

out

I
ground is connected to output ,·
output = 0

.

How does it work when input = 1 ? -> Since ground produces logic = 0 &

J
Gnd = O

How would we build this - Replace the power switch with a pos transistor . Replace ground switch w/ an nmos

inverter with transistors ? transistor.

-> Then
,
invert the output of the power transistor (with the 0 symbol

Als Topout

How does this inverter
-> If input = 1

, pros tr ·

is OPEN
,
so power is not connected to output.

work when input = 2 ?
- Ifinput = 1

,

nmos tr . is CLOSED
,

so ground is connected to output.

Al2) = 2 Foo. .

How does this inverter
-> If input = 0

, pros tr ·

is CLOSED
,
so power is connected to output.

work when input = 0 ?
- Ifinput = 0

,

nmos tr . is Open
,

so ground is not connected to output.

Power : I

A(in) = 0 Fayout = 2

-CMOS Inverter

anta
= o

What is a CMOS ? -> CMOS = "Complementary MOS"
...

the pMOS & nMOS transistors complement each

other to form the logic gate. Power

-> The inverter described above is a CMOS Inverter. I

pmos
What is the pull-up network? What "drives" the output whenever the output is 1.

-

pull-up

network

-> ALWAYS associated with PMOS transistor Inputs

Output
What is the pull-down network? What "drives" the output Whenever output is 0.

L nMOS
->

ALWAYS associated withMOS transistor .

pull-down

network

->

Only one network will be on at a time.
V

What are "switches in -> think of them as an AND function. When I switches A
End

series" ? and B are connected in Series
,

current will only flow if A AND Bare

on/closed

-> Current = SwitchA AND Switch B
-

How do they look ?
in

mum. Y In

- mmmmmA

In mus

-- Y In

mmmmomm
A B B

What are switches in parallel ?
-> Think of them as an OR function. Current will flow if A ORB is closed .

-Ei
or ina

↳
t Inmi

How doWe build a CMOS -RECALL : NAND Y = A x B / Y = AB
A B Y

00

For the NAND logingate ? - When AB is true
,

we want output = O
,

so
0 I I

Y
D I

we can build "switches in series"Caka ↓ D

A AND B) and connect them to GROUND
,
Since GROUND always sends

output of 0: Y

B -1

A+1

3 · This part of the CMOS will result in

something
GND

(namely , logic = 0) being sent to Y Whenever (AB)

is true. A = 1
, B =1 Ground =1 Y = 0

What do we build for when
->

When A = 0 OR B = 0
, we want output = 1

.

So we can build "switches

A and B aren't both logic = I ? in parallel" Laka A ORB)
,
but invert the values being sent to the A & B

transistors .

·

if A = 0 and B = 0
,

Send 1 and 2 to the 2 switches . Since at least one

is I
, output of 1 is received by power. A = 0

,
B = 0 =D Power = 1 =DY = 1

·

if A = 0 and B = 1
,

Send 1 and 0 to the 2 switches. Since at least one

is I
, output of 1 is received by power . A = 0

,
B = 1 =DPower = 1DY =

1

Und

-
A of ok

B

Y
Yad

How do we combine these I A

pieces to form the CMOS
B
or -4

y
NAND ?

·
How dow build a <MOS RECALL : NOR Y = A + B Fig] END

For the NOR logic gate ?
A BY · Lets build "switches in series" & invert the inputs so that
0 I

0 I D result = 1 if and only
if A = 0 and B = 0

i
D

:
↓

·

Since we actually want the output to be I output = result) when

A = 0 and B = 0
,

we should connect these switches to power.

Vod
-

↑

A-op

--
Y

A BY · We want output = 0 Whenever A + B (AORB is 1) = TRUE

001

010 ·

To do this
,

lets build switches in parallel so that whenever A = 1 Or

10
1 B = 1

,

result = 1

·

Since we actually want output = 0 When the above "result" = 1,

we should connect these switches to ground.

A

p +
Y

B I Vdd

How do we combine these 2

-END

"pieces to form the[MOS

NOR ?

Pand
Fig 2

How do we build a CMOS for -> RECALL : AND = Y = AB

A BYthe AND logic gate ?
O ↳ P

· When A & B is true
,

send output to POWER ; use switches

0 I j in series -

D

Y
↓ ↑ · Use switches in parallel ; send inverted in puts so that the

result= 1 Whenever these are true

↳ v
-> Send this output to GROUND

I G
- But actually ,

this does

1 not work !

↓
END

Why aren't the diagram& - because we can't usemostransistors in the pull-up network ?

method above correct for Solution : Use a NAND gate & add an inverter : 2) When the NAND

Vod gate sends an

CMOS "AND" ? ↑
Vdd

output of f

A of through GND,

Y 0 = 1 ,& thus
B T

·
-4 ·

Vod receives

Y = 1

2) When NAND sends

output = I through
Vdd

,
GND receives

END END output 1
, & thusFig I ↑ sends

output = 0

NAND Gate Inverter to to Y.
invert ND = AND

How do we build a
->

Similar concept : A NOR Gate + an inverter :

Vddcmos for the OR gate ? f
2) When A = 0 & B= 0

, Udd sends

output = 2 to inverter. Inverter

sends output = I to GND and

Op = 0 to Vdd
.

Thus
,
GND sends

· output to Y- 1= 1

!
Inverter sends output = J = I

-0- I
-

y
2) When A = 0 and B = 2

,
GND

sends output = 0 to inverter .

to Vdd
,
and output = 0 to GND

.

Pand Thus
, Vod sends output to Y

Vdd

!·
Fig & Pand

How
many transistors are Gate # of transistors

required to build each type of NOT 2 1-Do- 1

gate ?
AND G (fig . 3)

OR 6 (fig . 1)

NAND * (Fig . 1)

NOR J (fig . 2)

12
XOR

12
X NOR

Why do AND and OR require
-> Note that AND and OR gates require

6 transistors ? ↓ (NAND/NORgate) + 2 (Inverter) = E transistors !

D igital Logic Pt. 2

Why do we want to minimize -> Smaller amt. of transistors Reduces :

transistor count when building
G Delay from input to output

logic gates ? The area of the circuit taken up ; this is good bla we can

pack more lig Li . e - transistors) in a given space.

& Power consumption

5 The cost of the circuit

What is a logically equivalent
-

The "bubble" on an AND or OR Symbol :

circuit to an inverter 1

* Y
6 COR) + 2(NOT) = 8 transistors

NOT

is equivalent to

D Y ↓ (NOR) transistors

NOR

But obviously ,
one uses much less transistors than the other !

A This is the better ,What is a logically equivalent
B--

y is equivalent toDo y
-> conventional way toor a

NAND

What about NOR ? A This is the better ,
-

> Y is equivalent to No-y -> conventional way to draw
B ->8

~ NOR

How do we minimize transistor 2. Replace AND and OR gates with NAND getes , or NOR gates .

2

rams? Add bubbles to make the circuit logically equivalent .count on logic gate diag

circuit for NAND ? I 3.

*

WOR

make the circuit equivalent

30

O

34

①

Cancel out the free bubbles

N-
Draw the NAND and NOR gates in their conventional form .

NAND

Example ? -ANDor
2)

I
⑨

28 these I cancel out

o
bubbles to

go
cancel out

after replacing the AND and

OR with NANDs

48

Do
-> Replace owith Do

- Gates with more than 2 inputs-

a 3-input AND gate look like?

Symbol for 3-input OR gate ? - or clogical equivalentsX-Y
Symbol For 3-input NAND gate?Do- y ORllogical equivalents-O-Y
Symbol for 3-input Norgate?-Y OR (logical equivalent) Do y

What does the symbol for

I
- Y OR(logical equivalentsID T- Y

Symbol for 3-input Xorgate?I-y
OR (logical equivalent)

/Dy
Symbol For 3-inputXNoRo-y oRllogical equivalents (X0=Y
gate?

Ihe Laws of Boolean Algebra

What do we use boolean -> To create logically equivalent circuits that use fewer transistors (

algebra for ? (MOTIVATION : Recall notes on Digital Logicpt . 2)

What are boolean algebra
-> Laws about boolean statements where :

laws ? · Letters (A ,
B

,

C
,

etc.) represent literals
·

"

+

"

= OR

8 "" (aka multiplication) = AND

-> Every Boolean alg law comes in a pair of statements : the AND version and the

OR version

What is the Identity Law ? - A + O = A) Any literal A ord with O will always output AS
.

-> A - 1 = A (Any literal A and'd with I will always output A) .

What is the Null Law ? -> A + 1 = 1 /A ORI always = 2)

-> A - 0 = 0 (A AND O always = 0)

What is the Idempotent Law ? -> A + A = A (A ORA = A)

-> A - A = A (A AND A = A)

What is the complement Law ?
-> A + 5 = 2 (A OR NOTA = 1)

-> A . = 0 LA AND NOT A = 0)

13
What is an example of -> The equation Y = AA + BC

26

optimizing a circuit ? produces this circuit :

*

it has b + 6 + 6 = 18 transistors 16I
-> A . B = B - A

B

6

r2

6

-> Using the idempotent law AA = A
,
we can reduce the equation to Y : A + BC,

producing the circuit

· it has 6 + 6 = 12 transistors

-> By converting the gates into NAND gates (RECALL : Digital Logic 2)
,
we can further

reduce the circuit to 10 transistors : A

Do.,L

What is the Commutative Law ? - A + B = B + A

What is the Associative Law ?
-> (A + B) + c = A + (B+ c)

-> (A . B) . C = A . (B - C)

What is the Distributive Law ? - A- (B + 1) = (A - B) + (A - c)

↳ (A AND (B OR (1) = ((A ANDB) OR CAANB)(

-> A + (B -C) = (A + B) . (A + c)

↳ (A OR(BANDC)) = ((AORB) AND IA OR(

Proof For the distributive -> Lets use the other laws to prove the truth of A + (B · c) = (A + B) · (A + c)

law LOR version] ? 2. Distribute out the terms : A + (B2) = AA + AC + AB + BC

↓
= A + A2 + AB + B2

= A(1 + c + B) + B)
-

= A(2) + BC

wr

= A + B2

What is De Morgan's Theorem ! ->Used to Simplify large NOT bars (e . g. A + B

-> A + B = A - B (NOT (A OR B) = NOTCA) AND NOTCB)

-> AB = A + T (NOT <A AND B) = NOTCAS OR NOT (B))

-> This theorem is actually how we created the "conventional" NAND gate :

*-y isequivalent- y

Y = 5 + E Y = AB

-> DeMorgan's : Flipping the inputs (Fi + AB)
,

operations (AB + A + B) ,
and the outputs (A + 1 + * + i

...

ThusB -> A + B

When would we need to use
-> When

converting a truth table into a boolean equation !

these laws for simplification? 2. Create an equation in "Sum of products" form (RECALL(

2. Use the laws to simplify !

I 5)Carnaugh Maps (17 Map

What are K Maps ?
-> A tool used to simplify boolean expressions

· An alternate tool to using boolean algebra laws ·

& 17- Maps provide a graphical method to find simplified boolean expressions.

-> B enefit : If used properly ,
K Maps always derive the most simplified equation !

Unlike boolean aly ,
where

you aren't always 100 % Sure if you've maximized simplification.

How do K Maps work ? -> A diagram/grid that makes it easy to identify combinable terms.

> Each box in the K-map corresponds to a singlerow entry in the truth table.

↓his
a 3-Input Function ? I

A ruth table : " * R Re
>

A = 0, = 1 , = 0

a IBPR4
6

7

& The "O" & "1"on y-axis indicate values of A

->

MeOOO" ,
"ll"

,
"lo" are values of B & C,respectiveor

↓

! -B = 1

Example of a K Map Fur

I
Given

-

A
BC

D
A

BC

oo on 22 Because in Roon ,

c = 0

How do we Fill in the K-Map? - With the Y (output) of each wow ! A
BC

00 02 11 10

o 01 W

2 000 0

What is gray code ?
-> The ordering that we used for the Band & values in the ex above.

-> In Gray code
,

Successive values differ by only 1 bit-unlike binary
:

Gray code : 00
,

01
,

"
,

10 Binary : 00
,

01
,

10
,
"

00

-]
2 [·
· J

eg L
,
R

,
above

,
or below

&
Why is gray code Useful Each square in the K-Map differs from its adjacent squares by one

for K-Maps ? liver al :

·

Entry & Entry 1 both share "AB",
00 02 11 10

and only differ by the value of literal
* 8 1

. 13
·

Entries 1 & 3 both differ only in their B

190,

0
,

0
6

literal

S· how do you use a k-Map 1. Make the K-Map "table"
,

& fill in all squares /according to truth table (

BC

to find simplified Boolean A

00 02 11 10

* 011 W

2 00 0 8

Example of using a 17 Map ?

2 .

Group the terms together
-- all terms where the entry is I must get grouped.

· We'll learn later about how to create the
groups

.

BC

08 02 1110

·

"Grouping" Entries 1 & 3

* 0 1
. 18

190583

3.
Find the literals that each group has in common

,
and "OR" them in the Final eg

.

· Entry 1 : ABC ·

Entry 3 : BC

· Both entriesShareand C ! ANS :
Y = C

BCHow do
you read 2

> EX :
A

00 02 11 10

grouped K-Map ?

equations ?

I
3.

I

A

1

2

~

111

8

8

11 I

* 00 Do

2. For each group , analyze each entry in the group. Extract the terms that all

es have in common (there should be 2 ?)
. AND these terms togetherentn

· Left group : A = 2
,

B =0 As

·

Right group : A = 1,
c = 1 & Al

2 .

8 & the terms from step 1 together to create the final equation .

Y = AB + Ac

What are the Group ing
1.

All squares in each group must contain only Es ,
and every

cell containing
Rules For K-Map s ?

a E must be in at least
one group

B

A 10 A 01

000 - 00 ⑧ X

2 .

Groups may be horizontal or vertical
,

but NOT diagonal.

Groups must contain 2" cells
,
where n = 0

,
1

,
2

,
etc . aka

,
must be a power

of 2. e . g.
1

,
2

,
8

, 8, ... cells.

A
BC

A
BC

00 02 11 10 00 02 11 10

*
&

100 - * 0000 X
2 1110 2 1 10

↓.

Each group must be as large as possiba

00 02 11 10 00 02 11 10

o I 111 - * 111

2001 I 2 00 1

5.

Groups may wrap around the table.

A
BC

00 02 1210
·Here

,

the group is ABC
,

ABC
,
ABE

,
and ABI

o 100 (y = c)

11 001

6.
When multiple groups , every group should contain at least one vie I

Jaka unique entry).
A

BC
A

BC
> the bottom group

00 02 11 10 00 02 11 10
is redundant

o I 111 * I 1 &

I 2 00112 00

How do we create a K-Map
-> Truth table : Row

From a truth table withI
*

⑧

variables ? 38 "

· "*

oJ·j&
j 8

ii ! ↓ j

-> 17-Map (Orange numbers indicate
corresponding Rows :

AB
↑
1 using Gray code order so that adjacent cells differ by

08 01 1 18 only 1 literal

00
013 2

& this cell is 0110 ... therefore it corresponds to Row 6 .

0
J S 6

11 12 13 15 14

10
z 911 10

Example of reading a AB
00 01 11 10

↓ - variable K-Map ?
00 I 00 0

0 1110

11 I 1 I

10 10 00

How do
you put a boolean

equation in Sum of

Products (SoP) Form?

How do we simplify > EXAMPLE : Y = ABC + ABC + AcB + ALB + AI + AB + c

a boolean equation using -> Step 2 : Put the equation in Sop form.

a 1-Map ! ABL + ABC + AcB + ALB + A + AB + c

E ↓ Y Y
ABL + ABC + AB + B + A(B + AB + + D + Ac + BC

-> Step 2 : Fill out the K-Map.

Y = ABL + ABC + AB + AL + ALB + AB + + D + Ac + BC

Y each term in the SOP-form

AB equation can tell
you where

08 0 1 18
to place a L in the K-Map .

·

e
. g. ABC -A = 1

,
B = 1

,
7 = 0 then

00 D 11 I

Y = 1
... entry 15 has a I

0 11 I

11 I 1 I

10 0, 1 I

~ Step 3 : Group the entries & find the simplified egration !

AB
08 0 1 18 Group 1 : D = 1

A
2

00 D I I I · Group 2 : c = 1

0 1 I I ·

Group 3 : B = I

11 I I I I
ANS : Y = B + L + D

3

10 u , 1 I

Quiz O Review

Logic Gates

Name Equation Symbol Transistor Count

AND Y = AB

=- Y
6

OR Y = A + B B- y
6

NOT Y = A A -Da- Y 2

NAND Y = AB
*Do- Y OR J

-Y
NOR y = A + B y on-Y

g

XOR Y = AB

D-

Y
12

XNOR Y = AB mo-

y 12

211 Review

unit bits example

byte z 00001101

nibble J 118/

word 16 or 32 ?

With n bits,

· you can represent zU distinct values · LARGEST NUM : 2" - I

· Z's complement most
·

I's complement most

negative num : - < 2) positive num : (20-1) - I

-> LSB = RIGHTMOST 8 bits
.

Stored in the 1st mem address (little Endian)

-> MSB = LEFTMOST 8 bits
.

Stored in the last mem address Address Valve

↓2
,
185 = 030000000000000000 1016 01001100 1001 8 11001001

~ -

MSB LSB 2 10100100

-> Bits needed to address
memory

= log (size in bytes of total memory
2 00000000

3 00000000

Quiz O Review
211 Review

-> Decimal D I 2 35 S 6 7 8 E 18 11

Binary 000000010010 0011 010 0 0106 0110 011) 1000 1001 1010 1011

Hex 000x10x20x30x40x5 Ox6 0x7 0x80x9 Ox A Ox B

Decimal 12 13 18 15 16 17 18 19

Binary 1100 110 1118 111 10000 10001 1001 8 1001/

Hex 0xC OxD OxE OxF Ox 10 0x11 OX 12 0x13

->

Conventing decimal to hex :

2. Fill our this chart JogbE5 To I where every blank can have a max value of

F (aka (1)

Ex 50 - 88?[because 3(16) + 2(1) = 50

-> Finding address of element in array : (index [e1] X Sizey(element type)) + base addr

Exo Element & in int array ; base addr = 0x0000300c

2. 10 x SinofLint) = = No

2. Add decimal num from steps to decimal version of last relevant digits of

base address :

·

0 - 12

·

20 + 12
= 52

3.
Convert ans to decimal : 52 - 16(3) + 1(8) -> 0x3y

↓. Add result to base addr (replacing last digits w/ result) :

0x00003000

+ 0x0000003y

0x0000 3038 W

Transistors

-> nMOS : Vg low =

open nMOS- "normal" MOS- >

V

g high
= closed = ON the normal thinking would be that

-> pMOS : Vglow
= closed = On "high" power results in it flowing

vg high
= open through . Therefore ,

in MOS,

V ghigh Circuit closed =s power

on

Multiplexers
What is a 2: 1 multiplexer ? - A circuit that chooses an output from among 2 inputs

,

based on the value

(2 : 1 mux
of a select signal.

-> Multi plexers are useful for implementing if-statements.

Inputs output based on the value of the select signal-Toutput

&-
Select Signal : selects which input gets sent to output

Statement Truth Table SOP Equation
if (S = = 0) : Y = A y = JAB + JAB + SAB +

else if SAB

Example of a regular Schematic = A5(3 + B) + BS(+ A)

for an if-statement ? - = A5 + BS

Diagram

What is the 1: 1 mux symbol ?

I
B

f

A

s

7

S[2]S[O]

&

These labels tell us how the mux chooses the

O
How could wa replace this

>

A O

·

When S = 0
,
it signals output = y = A

diagram with a 2: 1 mux ?
B 2

Y
· When S = 1

,
it signals output = Y = B

-> This mux

diagram replaces/avoids having to draw that bigger more complicated

gate diagram.

What is a 8 : 1 multiplexer ? - A air , it that chooses an output from
among

& inputs
,

based on the value of a

14 : 1 mux)
select signal.

>
Since we needI signaling Options

,

S must be a 2-bit wire that can send a 2-bit

Signal (n = 2
,
2 = & "bit combinations")

How does the U : 1 Mux diagram
-> EX : For the Truthtable : Se So Y

look ? A 08 i · When S = 0600
, Y = A

⑤ ·
Y

2-bit wire : & D
·

When S = Ob01
,

y = B

-2 · When
S = Ob10

, y = (

S1 : 0 · When S = Ob11
, y = D

How can you implement the

same truth table with

a J: 1 mux made out of 2 i2: 1 muxes ?

s

Definitions in Digital Logic
What is a literal ? -> A single variable . May be complemented.

->

eg A
,

B
,

A

What is a product term ? -> An AND of individual literals

->

eg ABC
. But NOT ABC (because "Be" isn't a literal (

What is a minterm ? -> A product term in which all variables appear once.

->

eg ABI
,

ABC
,

ABI
,

or ABC

-> but NOT A
,

Ac
,

BC
,
etc .

How do you desire an equation
Truth Table 2. Write the minterm for

using mintarms ?
MB cFT

Minterm Minterm name each row .

001 8
C M2 minterns for rows where output = 1

010 I

BI M2 Equation
01 I 8

A BL My F = Abi+ Bi + ABL + ABL

I 00 ⑧
AB my OR

I 0 I A (ms F(A
,
B

, c) = & (mo
,
My

,
Mg

,

myI 00 0 'B Mo 2. Take the sum of the

& I O 8 ABI my
I I I I ABL my

What is sum of products ?
- When 2 or more product terms are summed (OR) together.

->
e . g. Y = AB + AT

-> but NOT Y = (A + B) (C + A)

What is Canonical Sum of - An soo form in which each product contains all literals
,

e -

g.

Products Form? F = A + ABC + ABC + ABC

What is simplified Sum of -> When you use boolean algebra to simplify thecanonical Sop form
,

e . g.

Products form ? F = * Be + C(B + Ali + B)) =) Bi + <(B + A)

=> B(AI) + AL + AB =
AI + AL

What is a maxterm ? -> A term in which all variables appear once
,

as literals ORd together
-> egA + B + z

-> To write the maxterm for a truth table row
,

Sum the complement of each

literal's value together.

- Eg : A B2 Y

j I 01 + A + 3 + c = Y

How do you desire an equation
1

.
Write the maxterm for Truth Table

using max terms ? each row
B< FTMaxterm Maxterm name

2. Take the product of
0 0 01 + B + C Mo

the max terms for rows
8 01 8

A + B + I m
,

where output = 0 & 10 I
A + 3 + C Mz

8 1 8
A + m + z my

I 00 ⑧
* + B + L

My

I 0 11
A + B + 2 Ms

& 100 n + m + C My

Equation
111 I

i + m + = My

F = (A + B + 2))A + m + 2)(A + B + c)(+ m + 1)
OR

F = T(Mz
, My

,
My

,
My)

Why does this derived equation
-> creating the canonical SOP equation for E

work ? F = A b) + ABC + AB + ABT

And negating both sides + applying DeMorgans
F = A-) + BC + ABI + ABI

F = (A + B + 2))A + m + 2)(A + B + c)(+ m + 1)

Actually yields the same term !

k - map Definitions

What is an implicant ? - Any product term (RECALL : AB
,
BC

,
etc) whose output for a given

Boolean equation is 1
.

-> aka
,

in a k-Map ,

the terms that define
any group

of Is .

Exampie ?
A

BC Implicants

00 02 11 10 ↑ BC BL

* ↳ ABC Al

2· ABC

What is a prime implicant ?- A~ implicant that is not a subset of any other implicant.

->
ala

,
in a K-Map

,
an implicant that corresponds to a group

which can NOT be covered by any other group.D
Example ? AB

·

prime implicants :

D
,

BEI AB

·
· red = implicants

What is an essential prime
- A prime implicant wherei

implicant ? · At least I element is not covered by 1 or more other

prime implicants.

-> aka
,

in a 17-map ,
a

group that is necessary to use in the final solution

to coverall Is .

Example ? D

00 01 11 10 · red- essential prime implicants
,
all a the

o 0 0 Final
groups (in this case

00
·

orange > non-essential prime implicant .

111 E

10 Mo o

What is an non-essential - A prime implicant that :

prime implicant ? ·

Contains NO elements which can't be covered by another

prime implicant group .

AB
What is the formal procedure I. Convert truth table to K-Map .

00 01 11 10

For using K-Maps to derive 0000 I

01 11 I

equations ?
11 I 100

10 0 0 11

2- Include all essential prime implicants. AB
BE

,
B 00 01 11 10

00 O 8 W
0 11 I

11 I I 00

10 E · M
3

. Include non-essential prime implicants as needed to cover all 23 .

AB
00 01 11 10 ·

choosing either of the non-essential

00 O 8 W primes (green or orange) will give us the

0 11 I
most simplified equation.

11 I I 00 y = Bi + 3) + m = Bi + c(i + m)
OR

10 00m Y = Bi + B) + B = BC + B(m + i)

Lab D

What is a tunnel ? - A way to draw an "invisible wire" to bird 2 points together
-> Tunnels are grouped by case sensitive labels

Example ? -> Normal circuit :

· ⑧ Yo

8 Y
,

* Do - In
Ind Y

I
-> With Tunnels :

A

In Do

I

⑧ Y
,

Adder/Subtractur

SHow can we label the parts of
I I 1. Column O

j

a binary addition operation ? t

I j I 2. Column O Sum (Sol

11 I 3.
Carry-out from column O (Co

,
b) ; Carry- in to column 1 (Cin

.
2)

I
6 y O

2 -

Column 1 sum (S2)
5.

Carry-out column 1 Co
,
a) ; Carry-in to column 2(Cin

,
2)

6.
Column 2 sum(S2

"Carry-out from column 2 (Co
.
n)

What is a half - adder
-> A circuit that can add together 2 one-bit values Y

-> A and B
circuit ? -> It can add the 2 bits in column O and output 2 things : Half Adder

·

The sum S
G Circuit

W
· The carry-out bit Co S

What is the truth table and A BCS

equation(s) for half adder ? & 0 O * S = B + AB AD B (exclusive ORS

#
O 10 I

C = AB

I I I &

What is the circuit diagram? . os

D ⑧

What is a full adder circuit ?
-

> A circuit that can add together three one-bit values and output the Sum S and the

A

10-bit Co
.

↓
-> This circuit can be used to add the values of a column

Full Adder

What is the truth table &

I
7

I ⑧ & I

·

Notice that when an odd of inputs = 1 (1 or Binputs)
,

S = 1.

↳ C

Circuit
C

,

of binary addition when there was aCo-bit
, eg column 1 :

W

S
1 11

10 I
t

I I I

100

-> The 3 inputs of the addition in this EX are A
, B

,
and C

: (the co-bit from previous column).

derived equation? 8
A 3-input XOR can be used to represent this

S = ABC i=>> ·

G = Ac
:

+ AB + BC
; (K-Map used

-> logically equivalent to a 3-input

What would the full adder
XOR

-

diagram look like? t ⑧ S

D ·

..
·. Pr o

How can we create a circuit -> For
Coy ConColoeo

,
we can usey full-adders to add together

to add 24-bit values ? A and B
.

+

By By B
, Bo

(4-bit Adder)

AnBy
S , so "Carry-in" For

* Bo 1 column is O

Ar B A, ↓d &

- FA
Co

,
2 Co

, 1
Co

,
D

↑ FA ↓ FA M FA j E

3 S se so

How do we create a circuit for- RECALL : With Is complement ,
A-BA + - B)

.
To binary subtract

binary subtraction ? 2 numbers A and B
,
we have to negate B and then add it to A.

->
Instead of building a separate circuit

,

we can modify the ripple carry
adder (diagram above S

.
t

.

it can perform Subtraction AND addition,

·

How ? By modifying it st .
it can negate B.

How can we modify the ripple
-> RECALL : to negate a binarynum , negate each bit & then add I

carry adder to create the solution :
negate each input of B

,
and send in K = 1 as the carry

-in for column O :

A
By B2 Bo

Subtractor circuit ? d * t ·d

Co
,
2 k =

6
.
3 FA ris f,

d

FA FA FA j 2

3 S se so

How do we create an adder-subtractor -> Goal : Samecircuit to perform both addition and subtraction

circuit? ->Sortion : Let Gin
, o

= K
,
and use a 2 : 1 mux with 17 as the signal ,

to determine

whether to send B or B to the full adder !

·

if K = 0 : binary addition
,

2 : 1 mux outputs B

·

if 1 = 1 : binary subtraction
,

2 : 1 mux outputs
A By A2 B2

A
,

B, * Bo

9 9 9
I I W t& N --vW N

Co
.

2 Co
, 1

Co
,

D

r FA MS
,
3 FA FA

3 S se so

What is an alternate
way

->

Using XOR instead of a 2: 1 mux .

to implement Adder-Subtractor ? · RECALL : NG1 = NO = N (boolean rules

-> If We XOR B
; with K,

·

When K = 0 Caddition)
,
BiK = Bi

·

when K = 1 (subtraction)
, Bik = Bi

How would this diagram look? As By AzBz A
,
B, ↓Bok

·
·

j g :
--vv

- a C ,

N

Co
, 1

N

Co
,

D

6
,3

T
FA FA ↓ FA M FA S

3 S se so

Comparator and Shifter

What is an equality
-> A circuit that determines whether the 2 inputs are equal

A B

comparator circuit ? In \n-> n = # of bits in the input

Equality

Comparator no diagonal line = default 1-bit

< input/output

Equal ?

How would you design a circuit - Notice that when comparing 2 1-bit inputs
,

ADB (XNOR) = 1 when A = B and

to compare 8-bit inputs and output O When A ! = B : A BY
8 ↑ b
81 if they are equal? Do ! i ↑

To
: (.

- Equal

D.

->

Alternatively ,
we can save transistors by converting the AND

gate to a NOR gate

and subsequently turning the XNOR gates into XOR gates.

How do we design a circuit to
-> Since n = 1

, shifting an input A by more than n-1 = 3 bits will always produce 000000.

perform a Left-shift on a So we only need to Support the AI
,

A2
,
and As operations in ourI

number to - A /
Left Shift & Y3. 07 result

4 - bit input ? circuit.

· EX : A = ob1101 Ax1 = 1010 A 3 = 1000

A 2 = 0100 Ay = 0000

-> Solution : Have < 2-bit "shamt" input that acts as a select signal to the

Output
4. Its 2 bits

, so can represent up to ↓ values.

perform shift on

3 : 0
Circuit

- 2

shamt> # of bits to shift by
I

What would be thefruth table ? - Let # AzA
, Ay depialhe value of A

,
and same for Y

Output Value

The diagram ? to Yz Y
, Yo

Shift E As As A
,

Ap
Amount

1 A
,

A
,

A
, o

1 A
,

A
,

00

3A
.

0 0 O

Arithmetic Logic Unit (ALU)

What is a boolean unit ? -> A circuit/logis unit that can perform y boolean operations (AND
,
OR

,
XOR

,
NOR)

-> Encompasses the logic for all operations ,
and uses a 2-bit control Signal

CRECALL : Multiplexers !) to tell the circuit which operation to perform .

An
Boolean

Bool19 Unit

↓ u

How does the Boolean Unit
- The value of the bool select signal indicates which operation to perform :

operate ? Bool Operation Expression

08 AND AB

0 OR A + B

10 XOR A B

11 NOR A + B

->
The unit will perform all of the operations ,

and then output the one that was requested

What is the diagram for a AF .
based on the value of "bool" "

boolean unit ? B% o
Ol M

D i
(I

Shift

Y

with Is.

I ⑧Y

↓

Do
2

Bool /

What is the Bidirectional -> A circuit/logic unit that can perform 3 shift operations : Left shift
, logical right

Shifter ? shift
,
or arithmetic right shift.

-> Encompasses the logic for all 3 operations ,
and uses a 2-bit control Signal to tell

the circuit which operation to perform.

RECALL: What is a "logical" Operation Expression meaning Example

us "arithmetic" right shift ?
logical right A B Shift B to the right by A bits ,

110032 =

Shift
and pad the left side with OS -

12 1 1

arithmetic right A3B Shift B to the right by A bits
,
and pad

1100 > x2 =

the left side with the MSB OF B ! -
· if MSB (B) = 1

, Bis neg,
so we pad

· if MSB (B) = 0
,
then BABA

How does the bidirectional
-> The 2-bit select signal "bool" indicates which operation to perform :

shifter operate ? Bool Operation Expression
The left bit

we only need to perform 3

(Bood17) & O 0 Leftshift BA diff operations
-

tells you the
01 NONE NIN =

direction of the

Shiftor r I o logical R-
BA

Shift

1/ drithmetic R-
B >A

Shift

↳the
right bit tells you the type of shift Llogic or anthmetic

I I
originali > Bidirectional

-

Shifter

-n

V

result

What is the add/sub ? - RECALL : The adder/subtractor logic unit !

-> Uses a 1-bit control signal to tell the circuit which operation to perform.

In
Signal sub Mandisub/⑫operation ,pression

on

a
an

Y

What is an Arithmatic -> A circuit/logic unit that can perform add/sub
,
bidirectional Shift

,

AND boolean operations !

Logic Unit ? -> The value of the Shift and Math select signals are used to indicate which

· peration to perform .

What are "Shift" and "Math" ? ·

Shift 12-bit) : if Shift = 2
, perform a shift operation based on the value

of Bool . IfShift = 0
,
perform a boolean operation based on the value of

Bool

·

Math (1-bit) : if Math = 1
, perform an add/sub op .

based on the value of Sub.

if Math = 0
, perform a boolean or shift op .

based on the values of shift

and Bool.

Table of all operations in the Math Shift Sub Bool Operation

Anv ? 1 X D XX A + B
When Math = 1

,
we don't care ab

3 the values of Shift and Bool ; we

2 X 1 X X A B just need to know if doing ADD or SUB

j I X On BCA When Math = O
,
we don't care as

j I X 18 BA

I
the value of Sub.

01 X 1) B > A

& ⑧ X On A AND B

O 8
X 0 A OR B

Y j X 10 A XOR B

⑧ O X 1 A NOR B

What is the ALV diagram?

-
Sub S timalUnit

Bool & E
Shift & ↓

Math C

in

i
n

Result

What is the EFlag ? -> A component of the ALL that outputs logic 1 if & only if

the Result = 0

A B

In-
-
-

Sub S timalUnit

Bool & E
Shift & ↓

in

i d
Math C Wo

n

Result zag

Ware form Diagram3

What are warnform diagrams ?- A way to represent the values of our signals over time.

-> Each one-bit signal will have its own waveform.

How does a waveform look ? -
Like a square wave

,
where a low valve logic O and a high value o logic 1 :

elogic I
Falling

-> edge

-
Rising edgelogic

What are rising and ->

Risingedge : When a signal "rises" From logic low (0) to logic high (1).

falling edges ? - Falling edge : When a signal "Falls" From logic high >K to logic low (0).

Exampleofa - Take the following circuit : -Do

Bo no D Oy
waveform diag · Al time = Ops ,

we will

set input A = 0 and B = 1

· A ↓ time t = -Ops
,

we will change input A to A = 1
.

- As

I

A

ram ? I Time :

O

2

O
↑

20 ↓ o 68 80 100

waveform

O

-> Bareform

B

What is propogation delay ?
-> The time taken for a signal to travel from input to output

· it doesn't happen immediately ,
as we've been assuming this far.

-> REASON : Time for electricity to travel through a wire ; capacitors

charging & discharging ,
etc.

->
Denoted : tpa = time of propogation delay .

How does propogatiom -> When we change an input (e .g . A or B)
, the change in the output's wareform

ormdelay affect our wavef diagram won't be reflected immediately-bi First there is a delay of x picoseconds.

diagrams? -> The exact value of tod for different logic gates will be provided by Lece ;don't

need to calculate
.

Example of computing -> Let +pa(NOT gate) = 10 and tpd (ORgatel = 20 .

propogation delay ? A-Do ② ⑧ Y
B &

point "C"
-> If the value of input A changes at t = n

,
the value won't be inverted until n + lops.

-> If the value of input A changes at tin
,

the value of Y won't change until

n +10ps(NOT gate) + 20ps(OR gate) = n + 30ps

·

Therefore , delay from A1Y = 30 ps

-> DelayFrom B 10 Y = 20ps

How do we draw the waveform -> GIVEN : A and B start at 0 at t = Nops
,

we will set
A = 1.

diagram for this circuit? - To visualize the p . d
.,

we also track a "point >" placed right after the inverter.

:changes
at time = 50ps

-b/2 +pa(NOT) = 10

8

Y L
Y changes at timeTops

-> bic + pa(AND) = 30

E

What is the longest -> Given a circuit and the tpp values for each logic gate,
the LCP is the

combinatorial path ? path from an input to Y that has the greatest propogation delay.

Gate + pa(ps)

-Donou NOT 15

--D WAND 20

-> LCP = A - Y : AND 38

15ps + 20ps + J0ps = 75ps OR *

-> Shortest path = Bey : 20ps + Nops = 60ps

3 .
03 mm (normal highlighter

T- lip - Flops
What is a D Flip Elop ?

-> A digital electronic circuit that is used to delay ("D" = delay) the change

of state of its output signal using clock timing .

-> Diagram: D Q
· D : the value we want to store

· Qo
· Q = the stored value (from D) at

any given point .

· = Inverted stored value

· C = the Clock ; determines When D is stored
.

What is a clock ? -> A one-bit signal that oscillates (or "boggles") back and forth between O

and 1 at a constant consistent pace (e . g .

"Clock period = 100ps")
-> Ihe

purpose of the clock is to ensure that our circuits stay in sync.

What is a period ? > RECALL Calculus : The period of a clock is the time between one rising edge and

Period

the next :
-1

-> The period is how we define/quantify the speed of a clock ; e .

g .

"A clock with

clock period = Toops".

-> The perio d determines how fast our circuit runs ; the shorter the period,

the faster our circuit.

What
are the I types up

2 .

Positive-Edge triggered
:

DFlip-flops ? · Q stores the value of D when the clock goes from 0-1

·

Qupdates on every rising edge of the clock

2. Negative - Edge triggered :I
(ns) O &

I
z

I

12 16 20 26
·The clock has a period

· Q stores the value of D when the clock goes from 1--0

·

Q updates on every falling edge of the clock

How does a positive-edge
-> Basically ,

we have 1 or more inputs and some logic circuit that outputs a value

& flip-flop work T & based on the input(s) e . g .,
a NAND circuit

,
a full adder

,
an ALU

,
etc.

-> The Flip-flop adds a variable Q which starts at some specified value (e .

g. 8)

and then, every time the clock has a rising edge ala every seconds
,
where p =

the period length
-

,
the value of Q is updated to equal the value of D at that point in time.

Time

I
I

Example of a waveform diagram
-

&
of4 ns

I

For a pos . edge-trig
Ck I

·

Every time clock has a

gered &

I

Flip Flop ?
I rising edge ,

check the

D :
value of D and change

Q Lif needed)
.

Q ! · Notice that D= 0 at both

indicated clock rising! edges

What is Clock-to-Q -> The amount of time that it takes for the "update" of D's value to appear on

delay? the output (Q) after the clock trigger.

-> Aka
,
the propogation delay for Q it doesn't immediately update when

Clk goes From 0-1 ...
there is a tpd in between.

Example? -> The same wereform diagram from the previous ex
,

but withClk-to-delay = Ins :

Times10 + 8 12 16 20 26

Ck

D

Q

I

Registers Motivation : Back-to-back additions

How would we perform back-to-Let Apo for our adder = 600ps
-

meaning that after we input A and B
,
it will

back additions with one adder take 600ps for a value and a carry-out bit to be output.

circuit ?
-> EX:

Performing 7 + 1
, 18th

,
and 30 + 8

,
back-to-back.

A
· a so

OS

addera
B ob

C ⑧Co II 3.

1200 30 8 25 8

Oa · Ci

carry - in bit
Add

What are the steps to doing this ? 1. At time t = Ops ,
set A = 7 and B = 7

.Initially
,

Sand Co = 0.

2- We can't start addition #2 until the circuit outputs S = 16-600ps bic oftpd .

At t = 600ps
,

we can now change A = 18 and B = 7.

At t = 1200ps ,
S has updated to = 25. Now we are ready to perform the next op . So we

set A = 30 and B = 8.

%

Once we are done / this last one
,

we can set A = 0 and B =

Time (ps) A B S Co

j 7 7 & *

600 18 7 18 A

1800 z J 38 E

-> In total
, performing these 3 operations took 1800ps.

-

Registers-
What is a register ?

-> A combination of multiple Flip Flops together
-> u sea for storing multi-bit values

Do Do · D Qo ⑧ Q0

D1o

.
⑧ Q1

ClK M · > EX : A 2-bit register

Why do we use reg
-> If we wanted to do back-to-back operations like in the prev addition example,

We can't just manually set the input values every 600ps.

· Instead
,

we use a clock and we use registers to update the inputs

at the proper times.

What is an N-bil
N · "en" = Enable

ister? Likes2 90/0Q
· if en = 1

,
the register will read D on

positive-edge triggered reg
the rising edge of the clock (and Store

Register
Ex : How would we use reg A 6

it in Q)
. If

en=0
, the register will not read D.

isters ?

isters I D / · D

x

N

&

Cycle :

to perform the additions ? e
Reg

· a

So
·

b Q e ⑧ Y
B Or Ci

Co
2. · en

· Add Reg

Reg

Lik r s

How
would the timingwork ? -> Each register's stored value will update on the rising edge of the clock.

This means that when we begin Le . g . Ops) ,
the 1st reg .

will have nothing ,
and

A & B will be storing "7" and "7"

· Upon the First rising edge (+ the CIK-to-g delays ,
the register will out put

the vals of A and B that they store-meaning we can begin the Is" computation.

How will we utilize the-Due to the schedule of when the registers update ,

we can perform one addition

clock cycle? per clock cycle.

-> W e should set the length of the clock cycle s .t . each computation can be done in 1

beginIertation begin begin zrd
2nd computation computation

↓ ↓ ↓

-
↑ ↑ ↓

Is"computation should computation computation

be completed by next rising 2 completed 3 completed .

edge of the clock

Timing
next- A

Example of performing s Q o

2. · en

with registers ? next-B

curr-B ·

b
Co
· a . O Y

B ⑧
* s Q o

Or Ci 2. · en

2. · en
Add Reg

Reg

Lik r s

-> In this Ex
,

we will perform 30 + 8
,
1877

,
and 717 .

We will complete one addition per

Clo Ck cycle.

What is the starting state ? -> A1) values = 0

What happens in Cycle 0 ? - 0~ the Rising Edge ,
the registers

will update to hold values for Hand B :

· next -

A = 30 · next
.

B = 8

back-to-back additions

I
A ⑧

Reg
curr-A

· a

So
curr-sum

adder)

prev-sum

-> After the C1k-to-g delay ,
the values stored in registers will get stored in Q :

· next -

A = 30 · next -

B = 8

·CurrA = 30 · currB = 8

-> After the adder propogation delay (Add pd) ,
the adder will output the sum of Q(A)

and Q(B) :

· next -

A = 30 · next -

B = 8

·CurA = 30 · currB = z

D curr-sum = 38 · prev-sum = o

-> The sum will not be sent to output Y until the next rising edge (plus alk-to-g dely

because ever-sum first has to go through that final register.

What happens in Cycle 1? - Cy cle 2 begins on the next RisingEdge of the clock
,
when the new operands are sent in :

· next -

A = 12 · next -

B = 7

·CurA = 30 · curr
.

B = z

· curr-sum = 38 · prev-sum = o

-> After clk-to-a delay :

· next -

A =
18 · next -

B = 18

· CurrA = 18 · currB = 7

· curr-sum = 38 ·Prev-
sum = 38

(Now , the value of the First add operation ismailable"
-> After Adderpd :

· next -

A =
18

· next -

B = 7 (the new Sum is output by the

· CurrA = 18 · currB = 7

D curr-sum = 25 ·Prev-
sum = 38

What happens in Cycle 2 ? - On next RisingEdge :

· next -

A = T · next -

B = 7

·CurA = 18 · currB = 7

· curr-sum = 25 ·Prev-
sum = 38

-> After 21k-to-g delay :

· next -

A = 7 ·
next-B = 7

· currA = 7 · currB = 7

· curr-sum = 25 · prev-sum = 25

-> After Adder pd :

· next -

A = 1 · next -

B = 7

· currA = 1 · currB = 7

· curr-sum = 14 · prev-
sum = 25

What happens in Cycles ? - After the next rising edge & alk-to- delay
,

the som 7 += 14 will be

sent to 4 .

i

. e
., prev-sum = 15 .

How long is the clock cycle/ -> We can adjust the length of the clock Cycle-aka time between one rising edg

period? and the next-based on our needs ! Its up to us .

- There is a minimum clock period at which the circuit will work properly ,
so our

clock period can be set to any
valve 1 Min . Clock period.

What is the minimum clock - the most optimized (i . e .
shortest) time within which the circuit can complete

period ? one operation.

· We don't include the Clk-to-a delay of the Final output register when

calculating the min
. Clock period .

How do we calculate the minclock -> Minclock period = Clk-to-a delay of the input registers +

period in this example circuit ? adder propogation delay
& bl the longest path has Badder

How do we calculate the min -> Min clock period = elk-to-a delay + longest combinational delay
clock period in general ?

What is the "Longest - The length (in times of the longest path between 2 registers
combinational delay" ? · AKA longest combinational path

-

Basically ,
the amt of times it takes for each operation unit in a path

between 2 registers
-> Does NOT include the 21k-to-a delay time of the registers.

What is the Max clock -> I/min clock period

Frequency ?

Pipelining
What is a single-cycle -> An implementation of a circuit such that it completes one operation in a

implementation ? single clock cycle .

What is pipelining?
-

Breaking our circuit down into multiple stages that can operate simultaneously
in order to make more efficient use of our hardware .

· We create "stages" by adding registers.
Example of a single-cycle Aoa

1-en

circuit ? Rey Adder

Bia-

Reg Adder a ⑧ Y

· Adder

Da
1-en

Rey

-> This circuit performs Y = A + B + c + D

EX : -> Let 21k-to-g delay = 20ps & adder pd = 180ps
What is the longest-combinational delay? The longest path bturn 2 registers has 2 adders

,
so 180 + 180 = 960psICIko

1-en

Reg

-

&

1-en

Adder > Q ⑧ Y

Ex : What is the minclock -> 20ps (c1k-to-delay) + 960ps(LCD) = 980ps

period ? -> If we run this circuit at the min clock period ,
it will take 980ps (10) = 9800ps

to complete 10 operations ,

How do we implement pipelining Aoa-
1-en

on this circuit ? D

Rey Adder

B -
1-en

-
-

"[
-D

1-en

c
- M Reg

1-en D

Reg Adder - -
1-en

D
-

Reg

1-en

Rey

CIko

How are these I circuits different? - The single-cycle impl. performs A + B and C + D Simultaneously ,
then immediately does the sum of the 2.

-> The pipelined imp! performs A+B and L + D simultaneously ,
but then sends the outputs

into 2 registers.

EX :

How does the pipelined -> GIVEN : 21k-to-g delay = 20ps and Adder pd = &80ps

circuit work? -> We will set our clock period to 500ps & do these operations ,starting at t= Ops.

2
10 + 9 + 8 + 7 no

2 -

5 + 1 + 3 + 2 Rey Adder

3
.

10 + 10 +20 + 20
·OnD,a aa

·

OramaReg
CD

D nD,ba
Rey

CIko &

What will happen at-
- At the beginning ,

nA
,
nB

,
nC

,
nD will hold the operands for the 2 addition.

t = 20ps ?
-> The registers will update to reflect the input values :

· nA
,
A = 10

· nC
, c

= 8

·

nB
,
B = 9

·

nD
,
cD = 7

t = 500ps ? -> After adder pd ,
the outputs are updated .

-> Additionally ,
since we broke our circuit into 2 stages of addition

,
we can now

start operation 2 !

· nA = 5 · cA = 10
· cAB = 19

· nB = j · cB = 9
· cCD = 15

· nc = 3 · c = 8

·

nD = 2 · iD = 7

t = 520ps ? - The inputs for op2 more past the registers and the inputs to the 2nd adder

also more past the registers.

-> Why ? Bl + = 500ps was the rising edge of the clock
,

and then it took zops

of alk-to-a delay for the registers to update ·

· nA = 5 · cA = 5
· cAB = 19

· nB = j · cB = J · cCD = 15

· nc = 3 · C =
3 · prAB = 19

·

nD = 2 · iD = 2 · prcD
= 15

- = 1000ps ? - Hops later
,

all 3 of the adders have performed & output values
.

-> Now
, we can also start operation 3 !

· nA = 10
· cA = 5

· cAB = 9 · cSum = 3)

· nB = 10 · cB = J · cCD = S

· nc = 20 · C =
3 · prAB = 19

·

nD = 20
· iD = 2 · prcD

= 15

t = 1020ps ? - After the R
.
E

. at += 1000ps
,

the registers update to hold the values of

*B
,
L

,
D for Op .

3
,

AtB and C+ D for op .2
,

and ArB + C + D for Op .
I

.

↑ Operation I is now complete -

· nA = 10
· cA = 10

· cAB = 9 · cSum = 3)

· nB = 10 · cB = 10 · cCD = 5 · pSum = 34

· nc = 20 · C = 20 · prAB = 9

·

nD = 20
· D = 20 · praD

= S

- 1500ps ? - All 3 adders perform addition operations & output values
.

· nA = 0 · cA = 10
· CAB = 20 · Sum = 18

· nB = 0 · cB = 10 · CD = 28 · pSum = 3)

· nc = 0 · C = 20 · prAB = 9

·

nD = 0 · D = 20 · prcD
= 5

+ = 1520ps ? -> The values of AtB and C + D for op . 3 and A + B + C + D for op . 2

get sent through the registers .

-> Operation 2 is now complete.
EX"

How
many clock cycles did + It took 2 Clock Cycles (Op . I was done at 1000ps ,

and our clock period was

it take to complete I operation? 500)

EX"
What is the longest -> the longest circuit between 2 registers has I adder

,
so LCP = H80ps

combinational path/delay?

EX:

What is the minclockpariod? - 20ps(Ik-to-adelay) + &80ps(((D) = 500ps

EX :

At the MLP
,now long will it -> OP2 finished at 1000ps ,

but operations 2 and beyond will finish at

take to do 10 operations ? 1500
,
2000

, 2500 ... etc. ps ,
so for 10 operations :

Soops o (10 + 1) = 5
,500 ps

Comparison of the single cycle & I Single Cycle Pipelined

pipelined impls of Y= A + B+ C + D ? longest comb . path 960ps 280ps

min clock period 980ps 500ps The pipelined

of cycles to complete I op .

2 2 circuit is much

Faster !

Time to complete 10 ops at McP
,

9,800ps 5
,500 ps

-

What are the execution times forTo perform n operations :

both implementations ?
·

Single Cycle : (n)(clock period)

·

Pipelined : (n + 1) (clock period)

Why is the pipelined impl. -> Because it has a significantly smaller mep.

usually Foster ? -> n(x) v . S . (n + 2) (X = 2)
... the 2nd expression will OFTEN yield a smaller value

·

- Metrics-

-> Let Sc-y denotethe Single-cycle example circuit performing Y = A + B + C + D

and let PL-Y denote the pipelined example .

What is latency ? -> The amount of time it takes to complete a single operation ,

from beginning
to end

.

· Ex :

Latency of SC-Y = 1 clock cycle = 980ps

·

Latency of PL-Y = 2 clock cycles = 2x500 = 1000ps

What is throughput ? - The number of operations that can be completed in a given amount of

What is speedup ? - inhashighethanStep is in comparison to

the single-cycle impl:

SPEEDup = Time to complete & ops on Simpl.

Time to completea ops on Pipelined impl.

· EX : The speedup of operation Y = A + B + C + D for 10 operations =I time.

9800ps/3500ps = 1 . 78 .

3)11 Quiz 1 Review

-> Topics : K-maps -

including "terms"
,

Multiplexers
, Digital Logic terms - Canonical Sop

,
maxterms

,

minterns
,

Adder
, comparator , shifter

,

ALU
,

Wave form diagrams , timings on FF diagrams.

K- Maps

-> Find the literals that each group has in common
,

andOR them for the final term . AB00 a 11 10

Do ⑧ I I

Grouping Rules : !01 D j E X
·

each group must contain only 1s
,
and all Is have to

get grouped
I E 01 I

·

Groups must be I" cells (e .g
. 1

,
2

,
4

,
8, ...)

10 10 X I
·

Each group must be as large as possible

·

If < I
groups ,

each group must have at least E unique
cell .

·

Ways to wrap around thefable : / L W W L

-> STEPS :

-3 [--
2. Create K-map

2. Include all essential prime implicants

3. Include all non-essential prime implicants as needed to cover all Is
.

Implicants

-> Implicant = any product/mintern in the SOP Form of an equation.

· Ex : Y = MN + MNOXNO = implicant... aka every Square with a "1" in the K-map.

-> PrimeImplicant = All possible groups that can be formed in a K-map .

The
p .

i . itcelf is the term that defines a given

group.

-> Essential Prime Implicant =

groups that cover at least one minterm that cannot be covered by another prime

implicant.

Multiplexers
-> chooses output based on a select signal : A 00

· if S = 00
, Y = A

.
if S = 01

,
Y = B,

-> If * of inputs = n
,

Select signal S
B 0

Y

if S = 10
,YIC

,
if S = 11

,
Y = B.

must be at least log, (n) bits.
C 10

·

alia
,
20F bits)

= M
D 1

/2

S

Intro to MIPS

RECALL : What is COMP 31 Converting :

vages Assembly ,
low-level languages Machine Lodeabout ? high-level prog. lang

(Easy for humans to read/write)

chuman readable) (Machine readable (

What is MIPS ? -> Micro proccesor without Interlocked Pipeline Stages
-> A computer architecture & assembly language.

·

Historically used in routers
,
embedded systems , gaming

consoles Leg PlayStation
·

A little old/outdated today.

-> All assembly langs are very similar
,
but MIPS is theeasiest to learn

. Once you know

MIPS
, you can pick other langs up very

easily.

What are some other computer ->

X 8 ↳ : Developed by Inter
, commonly used in servers

, desktop & laptop

· All MacbooksFrom 2005-2021 use X86-60 architecture on their

architectures ?

-

I
2

computers.

into

A

-

into

64-bit CPUs .

-> Arm : Used in most smartphones & tablets .

· All Macbooks after 2021 use the armby architecture .

What is an Instruction Set
- A set o rules that define the interface between the hardware and software

,

Architecture (ISA) Y

providing a way for the su to tell the nw what to do.

· A full vocabulary that combines instructions with registers , addressing models,

and data types

-Every 2 A is specific to a processor architecture ; for ex
,
the processor

aichtatre

abso c . w/ MiPS is RISC.

-> RELA L : COMP211 notes : "Compilation System overview"
, "Compiler step"

.

ALV Unit -

What is the ALU Unit in a -> A unit that performs ALL the ALL operations ,
on a 32-bit input.

MIPS
processor ?

· This is the thing that we built in Lab 2 !

-> The ALL Unit employs a S-bit ALV Op Control Signal Input that tells it which

operation to perform

· ALV Result

What are the control signals
-> ALL Operation Function

ion ? Ob 00000 AND

>

Ob 0100 0 XOR B Result
Da

Ob 01100 NOR >

*Lu

Ob 00001 add
operation

Ob 1000 1
sub

·
assume all registers are connected to the same clock.

Ob 00011 set on less than

What is the "set on less than" -> Performs the operation "A CB"
.

(SLT) operation ? If ACB
,

ALL Result = 1
.

If Ac = B
,
Art Result = 0

.

associated with each operat

I
Ob

A

00100

&

OR
A D

Q

aa

How does the Allwork? It perf·rms one operation per cycle .

& For each cycle ,
we must set 3 inputs : A

,

B
,

and ALLOp

MIPS Processor-

RECALL : What is a register ?
->

an operand which has to do with memory/hardware
-> MIP S defines 32 general purpose registers ,

$0 through $31
,
each of which have their

own meanings. Each one can hold a 32-bit value
· $0 always holds val = 0.

What is the Register File ? -> A small piece of memory
for storing intermediate results of computations.

- stored in hardware caka the registers (

->Contairs the 32 32-bit registers ,
$0 to $31 :

ister
Reg
File

What is the MIPS processor ? - A piece of logic that allows us to perform dependent operations !

·

e . g. a = 5 + 1
,

b = 7 + 8
,
and c = a + b

-> How ? By combining the RegFile with the ALV Unit so that we can read

from and write to registers.

How do we read From the S 32
-> Set the "read reg,

" inputs to the 5-bit val. of
Read

register File ?
I

Reg . 1 Reada I
the number of the register you want to read.

R
5

Reg . 2 Reada
-> The value stored at that register will

appear
/ Read

on the corresponding output.

E xample of reading from 3 3

,2910(0b 01010) I

the RegFile ?
3 9 9985 3

12 (0b01100) I 32 99
6 5

32

How do you write to the S Read Read I -> Set the "write register" to the num. of the
I Rey 1 Data I

E 32

S

Rey 2

Rege
Data 2

->Set the "Write data" in put to the value
you

I
Write

Rey want to store.
32

↓ Write Data
->

RegWrite = a control signal that we set to

↓ 2

RegWrite
1 when writing ,

and 0 when not writing
.

-> When RegWrite = I
,
we can still simultaneously read data on output if we want

to /

Register File ?

I 17

&

&

Read

6 5

Read I register where you want to store data.

Example of to the + 3X : Writing 52 to register $17 :

writing
5 32

Rey Fire? / I After the next rising edge of the

S j32
9 99853

clock, the RegFile will update :

5

32

52 I
9 99853

1 I
525

Put it all To etting 9 her

How
are the Rey File & Arv

-> The "read data" Outputs are given as inputs A and B to the Azu

unit combined in the MIP S
- The output of the ALV operation is wired as the input to the "write data" !

processor ?
-> Let ~ perform $8 = $2 + $3

,
where the vals stored at $2 and $3 are 5 and 6.

Example ? S Read Read Born0b00010 I Rey 1 Data I

E

0b00011 /Read Read

S

Rey 2

Reye
Data 2 roo5

00 ... 101

Ob 00100 I
Write

00001
Rey

32 & specifies the "add "

/Write Data
operation

↓ 2

& RegWrite

the Aur output
is sent to the

"Write data"input

32-bit values stored on

R For mat Instructions
S bits

RELAP : What are the inputs
specifying

S Read

le

Read yeana
ena

which registers I Rey 1 Data I

& outputs of a MIPS processor ?
to readout
-> I read Read

S bits specifying S

Rey 2

Reyn
Data 2

- Reywhichregistera I
Write

& S bit Alrop specifying32

/Write Data
which operation to

↓ 2 2. bit value specifying perform on"Read Data

Regwrite
-

if we are writing to
2"and "2"

a register

432-bit output y Arvop , stored in the writeReg

into binary code ? that can then be input into the MIPS processor !

-> The 32-bit data is broken up into several "Sections"

What are r-format -> Assembly instructions to perform an operation where the registers are

How is assembly code turned I -> An assembly instruction can be translated into a 32-bit binary string

instructions ? the operands .

·

e . g., not adding a constant val
,

but rather 2 vals alr stored at

2 registers·

What is the syntax of r-Format Coperation] [$rd]
,

[Drs]
,
[$rt)

1

instructions ? 2. operation" : the operation being performed (e .g- AND
,
add

,
etc.)

2.
$rd : the destination register ; where the output of the operation will

be stored .

3 . $
us, $ut : the source & target registers whose stored values will be the

inputs to the operation (e . g . "A" and "B" (

-> EX : add

$ $2 , B11

↓
the operation the destination the source

operand operands

What are the fields of the

Field :

opcode US rt rd shamt Funct

Bits :
31 : 26 25 : 2) 20 : 16 15 : 11 6 : 10 5 : 0

32-bit binary instruction ?
La bits) (Sbits) (Sbits) (Sbibs) [Sbits) (5bits/

-> The 5bit binary nums of the 3 registers in the operation (rs
,
ut

,
rd) are

stored in the "us"
,

"We"
,

and "rd" Fields.

What are the "opcode "and -> They are specified by the ISA
,

and they tell the processor which operation

"Funct" fields ? to perform.

-> The values at opcode & Funct are used to determine the value of the ALUOp

control signal .

What are the opcode &Funct ALvop :

00001

fields for common operations ? 10001

00000

00100

01100

00011

->Example converting assembly EXAMPLE : the instruction add $12
,
$7

,
$10

to binary?
2) interpret the instruction and identify register fields :

· $12 = $7 + $10

d ↓d
rd rs it

2)
Fill out Fields :

opcode US rt rd shamt Funct

100000 00111 01018 01100 00000 100000

ANS : Ob 10000000111010100110000000100000

-> The 32-bit inst
.

is taken as an input
,

and there split into substrings corresponding
How is the 32-bit r-instruction to the different fields ! field bits of inst

interpreted by the MIPS processor?
Funct 5 : 0

shaml 10 : 6

rd 15 : I

the bits specifying thered
rt 20 : 16

ister numbers 25 : 2)
us reg and 2 rs

Opcode 31 : 26

Reada
Read 32

Data In
/Read

le

Read inE

meyz Reg
Data 2

S

/
Write

15 : 1/ Rey
32

& /Write Data

the register beingwritten

to is given by the bits assoc. ↓ 2

with $rd RegWrite

Summary : What are all of the Syntax : Op $rd
,
$rs

,
Brt , R2a] = RErs] Op Rards

R-format operations ? · RCrd] denotes "RegFile(rd]" , aka
,

the contents stored at register rd .

NAME OPERATION

add RCrd] = R(rs] + R(r +]

Sub R(rd] = R[rs] - Rar +]

and RCrd] = RCrs] AND RCr +]

if RCrs] < RErt]
,

or RCrd] = RIrs] OR RErt]
R(d] = 1

.
else

,
R(d] = 0

nor
RCrd] = R [rs] NOR RCrt]

T

Sit RCrd] = (RCrs]< R[r +]) ? 1 : 0

I- F onsormat Instructi

tructions? Where the instruction operands are a combination of a register and a 16-bitWhat are i-format ins

constant (an "immediate" operand (

-> Used when you want to perform an op between a register and an immediate

valve (i .
e

.
a constant that is not in a register

· As opposed to r-type instructions
,

which perform operations between 2

registers. &
result stored here

What is the syntax of an Coperation] [Brt]
,

[$rs]
,

[immediate]

i-format instruction ? -> In informat instructions
,

we need the last 16 bits of the inst . to be designated
For storing the constant val

,
so we don't have and field

.

Instead
, we store

the result in the
reg. Specified by But

.
We write to $rt .

-> E X'
.

$5 = $1 + 12 9 add i $5
,
$1

,
12

> Syntax : Rart] = RErs] Op (immediate)

How do we set a register to -

Using informat instructions with the source operand register $0
,
since

a certain constant value ? it always holds value = 0 !

->EX :

a = 5 > add i $10
,
$0

,
5 ($10 now holds var a

b = 3
& addi $11

,
$0

,
3 <$11 holds var b)

c = a + b
& add $12

,
$10

,
$11 ($12 holdsvarc = a + b)

32-bit i-instruct ion ? I Bits :
31 : 26 25 : 21 20 : 16 15 : 0

What are the fields of the
Field :

opcode us rt immedia te

La bits) (S bits) (Sbits) (16 bits)

-> The & rd
,
Shamt

,
and Funct fields are excluded to make room for

the immediate value.

Example Converting
->

IN ST : add i $5
,
$0 , 2

assembly- > binary ? opcode US rt immedia te

00100000000 00101 0000000000001100

· ANS : Ob 001000000000 0101000000000000 1100

What are the opcodes For

i-format inst operations ? ALU Op

00001

00008

0010 0

0001

What will be input into the -The 32-bit value stored at $rs
,

aka RCrs]
,

ala "Read Data I
"

All for an in instruction ? -> The 16-bit value specified for the immediate
,

15 : 0
... EXCEPT

, we need to

bit-extend it to 32 bits ! rcsis]+7,2· The ALL takes & 32-bit inputs
extend (immediates /s-> There are 2 ways to extend the immediate value :

Ar Op& Lero-extension

&Sign-extension

What is zero-extension and - DEFN : pad immediate with 16 zeroes at the beginning.

When should we use it ? immediate (16) = AgA ,,

A
, y A

immediate (32) = 0000000000000000 AsA , ,
A

, z ,

... A

-> USE : For logical operations ,
where we do not want to preserve the decimal value

of a binary # Whose MSB = 1 take a negative number

· andi and or i operations will use a zero-extended immediate

value .

What is sign extension and + DEFN : pad immediate with 16 zeroes if MSB is 0
,

or 16 ones if MSB =

when should we use it ? immediate (16) = AgA ,,

A
, y A

immediate (32) =

* isAgA
,s

* igA ,s Ais AisAig AigAis AisAis Ais PigAisA , s
As A ,jA , z ,

... Do

(where A
,s

= MSB (

-> USE : for arithmetic operations ,
where we want to preserve the decimal value

.

· addi and siti will use a sign-extended immediate value.

What are all of the i-format NAME OPERATION

operations ? add i RCrt] = R(rs] + sign _

ext (immediate

andi R2rt] = RErs] AND zero_ext (immediate)

or i RCrt] = RErs] OR zero-ext(immediate)

Slti RCrt] = (R[rs] < sign-ext (immediate) ? 2 : 0

How does the datapath to the >06 Datapath For r-instructions :
25 :2

Instruction"& 20 : 16

MIDS Processor change
for

15 : 1/ inI t
i-instructions ?

↓ 2

RegWrite-> If executing an i-instruction
,

there a 3 key differences :

· The 5-bit value denoting which register will store the result of the operation

Caka the Write Reg] will be thert instead of the $rd.

· The 2nd 32-bit input to the ALV will be the immediate instead of RCrt]
,
aka

"Read Data 2"

·

The 16-bit immediate value will have to be either O-or sign-extended before being in put
to the ALU-

How do we modify the MIPS 20
Add a 2: 2 mux with a control signal that takes as inputs :

processor Hardware to execute · The S-bit value of $rd Cala bits 15 : 11
,
ala the write register for

both R
and I instructions? ~ - instructions)

,
AND

· The 5-bit value of $rt Lakabits 20 : 16
,
ala the write register for i-instructions)

And uses a RegDst control signal to determine which value will get sent to

the Write Register input.

2)
Add a 2: 1 mux that takes as inputs :

· The 32-bit value RCrt] Cala "Read Data 2" aka the 2nd operand for

r - instructions
,

AND

· The 32-bit value Extended -

immediate Jaka (extension + bits 15 : 0] ala the

2nd operand for i-instructions)

And uses an ALUSrc control signal to determine which value will get sent

to the second ALU input .

3)
A

piece of logic that takes the immediate value Jaka bits IS : 0) as an input ,
and

outputs the extended 32-bit imm . value

· It has an ExtType control signal that specifics whether the value

should be zero-or sign-extended.

25 :2
Read ->

2

Reada Data I ·T ,
2

&
Reada Rey

Read

F
+sleInstruction

write

Data 2

Write

Rey Are An
32

↓ 2

15 : 0

RegWrite

in I extend ↳z

-Ex +Type

25 :2
Read ->

2

Reada Data I ·T ,
2

Instruction
&

Reada·
+sReyn

Write

Rey Are An
RegDst WriteData

↓ 2

15 : 0

RegWrite

in I extend in
-Ex +Type

Summary : Control Signals for -> Whenever we are doing a boolean or logic operation land ,
or

,
nor

,
xor

,
add

, sub,

all r & : inst operations? Slt)
, Regwrite = 1

-> R- instructions :

· ALUSrc == 0 (taking RCrt] as the 2nd source operand)
·

RegDSt
== 1 (storing the result in $rd)

· ExtType == X (DONT CARE) (novalve that requires extension (

-> I-instructions :

· ALUSra == 1 (taking bits 15 : 0 (extended)
,
aka imm

,as 2nd source

operand)
·

RegDSt == 0 (storing the result in $rt)

·

ExtType == 0 For boolean operations

· and i ·
or i · nori

·

ExtType == 1 For logic operations
· addi ·Siti

MIPS Programming
What areLabels ? -> A way to "mark" sections of assembly code that you may want the program to be

able to jump to or repeatedly execute .
Like the beginning& end of a loop.

· EX : For-loops .

Example ? -> 100p. C : -> loop . 0 :

sum = O ; · we'll store sum and i in $10
,
$8

fur (i = 0 ; i < 5 j i+ + 35
· wa store the value representing the "terminating

Sum + = 23
point" of i ,ka5

,
in $9

Sum + = 10

-> We enclose the instructions in loop. 's for-loop in a Label :

addi $10$0 0

addi $850 0 initialize Sum
,
i

,
and terminating point

addi $9505
3

Loopstart : · Label "LoopStart"

addi$10 $102 -> Sum= sum + 2

addi$8$81 - i + + (i = i + 2)

LoopEndi · Label "LoopEnd"

addi $10 $1010 - Sum = sum + 8

the labels ? - With branch instructions that check whether the terminating condition (in

this case i = 5) has been reached !

What are branch -> Instructions that evaluate some condition . If the condition is true
, they tell the

instructions ?
program to "branch" to a different spot in the code. Specifically , they define a

label that should be branched to if the condition is true .

·

EX : If i = 5
,

end the for-loop & go to the label for the code to be executed

How do we actually utilize I
-> Note that for Branch instructions

, RegWrite = 0 !

after the loop ends.

What are all of the branch Instruction Format Meaning: Branch to Label if...

instructions? Branch on equal beg IrS Art Label $rs = = $r+

Branch on not equal bre $rSrt Label Ars != $r+

B . 0
. greater than bgt $r5 Art Label $rs > r+

B .0 . greater than or be $rS Art Label & us = $ut

equal

B. O . less than bit $r5rt Label
$rs < Art

B. 0
.

less than or equal ble $rSrt Label
5) rs[$ut

Example loop . o using
addi $10$0 0 &

branch instructions ?
addi $8$0 8 > i = 0

addi $9 $05 terminatept = 3

Start :Loop

beg $8 $9 LoopEnd <if R($8) = RC$9] -

ala
,
if i = 5, immediately

addi$10 $102 "branch to"the Loopand label to continue executing inst .

addi $8 $81 If not
,

continue to next inst
. below .

j Loopstart · This is a jump instruction that tells the program to

LoopEnd :
jump to the line labeled LopStart jaka , jump back to

addi $10 $10 18
beg of loop after executing the body .

What areN atire Instructions ? -Instructions that are supported by the datapath (the MIPS hardware diagram thing
AKA inst

.
that have actual hardware support.

· Includes : all the instructions we learned up until now

·

Includes : beg ,
bre

What are Pseudo Instructions? - Ones that aren't supported by the datapath ;they only exist to make programs

easier to read & Write .

-> when the program is assembled
, pseudo instructions are converted to one or more

truction I native instructions.

is converted

7

· Includes : bet , bge ,

bit
,

ble if $91$8 ,
let $1 = 1

.

Example of a pseudo ins
--- Else

,
let $1 = 0 .

beingconverted to a native one? be $8 $ 9 LoopEnd to S1 + $25958
if $1 = 0

,
aka $9?$8 ,

--- beg $150 LoopEnd branch to Loop End.

L ---
Else

,
don't branch -

jump to "LoopEnd" if $8 =$9

- Register Usage -

What is register O ($0) for ? -ALWAYS holds the value 0 . Cannot bewritten to
.

-> Useful for when
you need the value O (like initializing variables with addi X00 (

What is register 1 ($1) For ? -> Used by the assembler to resolve pseudo instructions .

-> You CAN write to this register ,
but the assembler may override the value when it needs

to resolve a pseudo-inst

·

Shouldn't rely on $1 to store values you might need later .

MIPS Memory Model

RECALL : What is the structure of -> Data stored in a "primary storage" component like RAM
, accessible to theCPU

a computer's main memory ? via a BUS (communication system between diff pieces of hardware

· Unlike Register data
,

which is stored in the register file which is actually

located in the CPU. higher
stack! memory

2 . addresses
ack: Used to manage function calls & local

N

variables.
-

· STACK grows down Dynamic Data
?

2-
Dynamic Data aka Heap : Used Fordynamic Static Data

memory allocation.
Tex +

&

lower

mem .

3- Stat ic Data : variables allocated at compile-time .

·
e . g., statically allocated arrays.

0 -

Tex↓ Programs Lala actual codel
.

Reserved
memory

for the OS

ter File ? I 5-

St

·

HEAP grows up Reserveds addresses

How does Memory compare -> Memory "

to the Regis ·

large
· takes longer to access

·

NOT part of the CPU

->

Register File :

· small · much
,
much

,
much faster to access

· part of thePr

-> We need MM bi we can't store all of our data in the RF

-> We store values/data that we are currently working with in the RF.

What is the load word -> IW ; used to read& bytes Jaka word) of data from memory

instruction ? and store it in a register.

-> In $rt offset ($rs)

What do sirt
,

offset
,

and -> $rs : a register that already) holds a

memory address .

-> Off5) us mean in the Iw inst? set : an immediate value that is added to RCrS] to obtain the address

·

e. g .,
In $rt ↓ ($rs) loading a word from N + Caddrstored at $rs]

-> $rt : Where we store the N byte (32-bit) data that we read from addr

Coffset + RCrs]]
Formula for the Iw instruction?

- R($r+] = MIR[$rs] + offset)
,
where "M" means Main Memory.

Example of the Iw instruction? Let $10 = 0x00000000
,
and let A = 25

,
90 ,

100
,
40 , 11] be an int

array stored at base

addr . 0x00000000 (aka A20)) . The size of an int is 8 bytes.

-> EX : In $11 8 ($10) will store the value 100 in register $11.

· $10 holds 0x00000000 & Offset = 8
,

so we want to read the data at

address 0x00000000 - 8 = 0x00000008

·

Since sizeof (int) = & bytes ,
0x00000008 holds the 3rd element of A

What is the store word -> Sw ; Used to Store & bytes (1 word) of data from the RF into memory !

instruction ? -> Sw $r+ Offset ($rS)

What dosrt
,

offset
,

and -> $rS : A register that calready) holds a memory address.

5 us mean in the swinst .? - Offset : An immediate value that is added to RCrs] to obtain the address

where we want to store the data.

->Art : Holds the data/valve that we want to store at the MM address.

What is the formula ? -> M [R($rSS + offset) = R[$r +]

Example using sw ? -> Let $10 = 0x00000000
, &17 = 8

,
and let A = 25

,
90 ,

100
,
40 , 11] be an int

array stored

at base addr . 0x00000000 Jaka ALOS) .

-> EX : sw $7 12 ($10) will modify array A into :

A = [5
, 90

, 100
,

8
,
11]

How do we store arrays in
-> We store statically allocated arrays in the static data segment (below the heap).

memory ?
-> To store ANY data in the static data Segment ,

we use the data directive

in our assembly code.

· da+ a 9. data directive
Example of usingdata to store

The name of the

data in static
memory?

A: word
,

5 90 100 2011
array -

- -

)
Indicates the size of each element in the array .

In this

case
, the size is I word

,
ala ↓ bytes.

How do we actually get a memory
+ E . g ., the valvestored in $r5 for load-word & Store-word instructions.

address into a register
? -> ANS : with the load address instruction

,

19.

What is the syntax of the la inst? la $r7 Label

· Gets the start address of the array/variable specified by Label and stores it

in $rt .

· For an array
,

la gets the start address of the array.

Example using la ? "A" is the Label

*: word 5 90100

la $10
, A

& stores the base address of A in $10 .

How do we store data in the -

Using thetext directive

text segment of memory ? - We will store our actual assembly code in the text segment , using the

· text directive
.

· da+ a

Example of using thetext
stored in the

directive ? data segment (A : word s 90 100 so 11

· gets the start addr of A

· text

Stored in the

[la $10
,

Ao · gets the value of A20]

text segment Iw $22
,

0 ($10) ·

Ex : What is an assembly
-> Let Arr = [10

,
13, 100

,
2

, 5]

program to increment every
element ex1 . 0

in an array by 1 ?
· data

-> store base addr of art in $10

arr : Word 10 15 100 21
-

get $8 to be the "terminating point" of the

·text loop; since there are 5 elements in arr
,

once

la $10 arr! we've incremented $100 times
,

we will have

addi $8$10 20 loopedthrough all elements & are finished.

LoopBegin : end the loop (by jumping to "LoopEnd") when

beg $10 $8 LoopEndo
· R($107 = R($8)

In $6 0($10) · let $6 store value of element at addr $10

addi $6$61 · · increment the element by 1

sw $60($10) · Store the new value at $6 back in its spot (addr $10)

addi $10 $104 - · increment the "curr-address" by N to point to

j Loop Begin the next element in arr.

LoopEnd :

What is the static instruction- >The number of native instructions that a program has

count ? -> AKA
,
if you convert every pseudo-instruction into a native one

,
& then count

up all the lines of assembly code written . Labels don't count
.

-> EX : 2x1 . 0 has 9 static instructions
.

·

every inst . is native except la

· la $6 arr resolves toa lui $2
,
1097

ori $10
,
$1

,
0

What does the static inst. - How much space the program takes up in memory .

count tell us?

What is the dynamic -> The # Of native instructions that actually get executed .

instruction count ? -> E . g .,
if there is a for-loop that hasSinst

.
& Literations

,
the

dynamic inst . count (DIC) = 5x3 = 15

-> EX : ex1
. o has 3 + 6 (5) + 2 = 31 dynamic instructions .

What does the DIC tell us ?
- Gives us an idea of the runtime.

-> The DIC & SK are 2 metrics to look at when trying to improve program
efficiency

.

How can we reduce the 2X2 . 0 2X2 . 0

instruction count of ext - 0 ? · data
· data

arr : Word 10 15 1002] arr : Word 10 15 1002]

·text
·text

la $10 arr la $10 arr

addi $8$10 20 is native
addi $8$10 20

beg PrsPrt LabelJLoopBegin : ~ & LoopBegin :

beg $10$8 LoopEnd In $8 0($6)

In $6 0 ($10) addi $8$81

addi $6$61 sw $80($6)

sw $60($10) addi $6$6y

addi $10 $10 y bre $6 $7 Loop Begin

j Loop Begin
the assembler always uses $2

LoopEnd :
&

for storing temp. values when

instructions.

What are some pseudo instructions -> beg $rsimm Label- addi $140imm resolving

& their translations ? beg Prs $1 Label

->

bge $0$9 Label - Sl + $1$8$9 , $1 willequal Zif 849
, and if

beg $150 Label 829

ble $9$16 Label -> Sit $2$16$9

beg $2$0 Label

What is the load immediate -> Sets $rd to the immediate value :

instruction ? 1 : $rd immediate RErd] = immediate

What is the more instruction ? ->
Copies the value of $rs into $rd :

more $rdArs RCrd) = RErs]

Example using these? -> addi $8408 -> li$8 &

-> addi $7$60 + more $7$6

Load Word and Store Word : Encoding & Hardware Support

RELALL: What are the"loadword" -> LOAD WORD : In But immediate ($rs)

and "store word" instructions? ·

store the data value at mem .
address [Irs + imm) in $r+

-> STORE WORD : SW But immediate (Prs)

·Store the data inside but at mem
.

address [$rs + imm .)

How arelw and sw instructions -> same as i-format !

Bits :
31 : 26 25 : 2) 20 : 16 15 : 0

La bits) (S bits) (S bits) (16 bits)

· Iw : opcode = 100011

· sw
: opcode = 10101

What "operation" is beingdone - Computing the address
,
ala RCrs] + SignExtend (immediate)

forIw and sw ? · We can use the ALV For this !

encoded in binary ?

I
Field :

opcode US

↓ 2

rt immedia te

·

Since it is addition
, always sign extend the immediate.

How do we extend the Datapath
25 :2 Reada

to supportIn and s ? Instruction"?20 : 16. iga·mvalue of Reye
Write- , write

15 : 0

RegWrite

in I
extend ↳

z

-Ex +Type

-> From the current DP
,

we can obtain y things :

· RCr +)
,ala the value to place in memory

for W instructions

· $rt
,

ala the register to store the mem . data for Iw instructions

· RErs] +imm
,

aka the memory address in question

-> To perform operations involving memory ,
we add a new component& new control signals !

MemWrite

25 :2
S Read Read - MemtoReg
I Rey 1 Data I -
E

Read Address ReadoI

reada
Write
i
I

·N -> 0Instruction
it Write Data

L
Rey

↓ 2

Data memory
15 : 0

RegWrite

in I extend ↳z

MemRead

-Ex +Type

What is the MemRead control signal? /- > Tells us if we have to read from memory
· Iw = reading from Mem = MemRead = I

· sw = Writing to mem = MemRead = 0

What is the extended Datapath?

I -> When MemRead = 1
,
the "Memory veit" obtains the value at "Address" in Main Mem,

and places it in the "Read Data" slot that gets output

What is the Mem Write Control signal? -> Tells us if we have to write to memory
·

Iw : MemWrite = O

& sw : MemWrite = I

-> When MemWrite = 1
,
the memory unit takes the data placed in "Write Data" & puts it in

Main Mem
. at the address.

What is the Memto Regcontrol + Tells us what output to send to the Write Register : the output of the memory

signal ? unit processes
- ala the data from some addr

.
in MM- OR the output of the

ALV .

· For add
,
sub

,
etc. Ops we learned so Bar

,we don't care about the memory

unit
,
so MemtoReg = 0

·

Fur Iw
, MemtoReg = 1

The Program Counter (PC)

What is the Stored Program - RECALL: Instructions (like add $8 $2$6) are stored in memory as 32-bit

Concept ? binary numbers.

· Since inst. are 32 bits
,
each take up ↓ bytes in memory. In the Text section.

~ The instructions for a given program are stored in subsequent memory addresses

that increment by 8.

How does the code that we write
2)

Pseudo-instructions are converted into native ones

get
"resolved" for execution ? Addresses for labels and offsets get resolved.

Address in

where
Assembled program

memory machine code code that is actually of program (the

ramExample of the stored
prog theinst

site
representation of

executed) code that you
wrote

concept? &
the inst .

↑ ↑ ↑
Address Code Basic Source

0x000030000x20060000 addi $6
,
$0

,
0 la $6 arr

S
0x00003008 OxzOcT0l addi $7

,
$6

,
26 addi $7

,
$6

,
26

0x00003008 0x8c80000 In $8
,
0($6) In $8

,
0($6)

increment
bya 0x0000300c 0x21080001 addi $8

,
$8

,1
addi $8

,
$8

,1

0x00003010 Oxacc800000 sw $8
,
0 ($6)

sw $8
,

0 ($6)(

0x00003018 0x20c6000y addi $6
,$6

,
y

addi $6
,$6

,
y

0x00003018 Oxidcfffb

bre $6
,
$7 - 5 bre $697 LoopBegin

What is the program
-> A register that holds the address of the instruction being currently

executed !

Counter (PC) ? · Holds the 32-bit address in a 32-bit register

notice that addrs I
20

instruction.

I

"isI Extendetype in

I

MemRead

L

-> The PC is not inside the register File.

-> For Ex
,

when executing addi $8$81 from the prog. above
,

PC = 0x0000300c

How is the value of the PC set? O or datapath executes one instruction per clock cycle . So on every clock

Cycle ,
the datapath will increment the PC value by 8 to Fetch the next

WAIT so...what does this have to - The PC is what automates the process of sending 32-bit instructions as inputs to

do with anything? our data path !

MemWrite

&
25 :2 MemtoReg

↳ Instruction 2016ism·
ux Data

↓ 2

Data memory

RegWrite

How do we use the PC to do this
?
-The P C holds the address of the instruction that should be executed in. On every

clock cycle
,

we need to do the Following :

1)
Increment PC = PC + &

Send the PC val into an "instruction memory" unit to extract the 32-bit

instruction at that address

3)
Send the 32-bit instruction into our datapath

How do we add the PC and

Instruction Memory to our datap
-

p & On every clock cycle , this sets PC= PC + +

F
,

the pe sends in an address
,
and the instruction

memory unit outputs the
3)-bit inst-stored at that address

& Address

a Instruction 3

Instruction

Memory

MemWrite

20: 16
.

ath?

I /Read

2)

Reye
Read

Data

L
25 :2

S Read Read - MemtoReg
/Rey 1 Data I

E
Read.

Reg2
Data 2

->
writa

·m -> 0

Write

15 : 1/ Rey
32 Data

Data memory
15 : 0 megt ite

Extend ↳zI -Ex +Type

MemRead

on EncodiBranch Instructi ng
Instruction Opcode

How do we encode branch sim i-format ! beg is ot Label

beg 000100

instructions in binary ?
- For Ex

, beg $10 $11 LoopBegin
brie 0001 0 1

3
Field :

opcode US rt immedia te

Bit S :

000100 00 Gol ???

truction ? -> TheWhat is the target ins instruction that the program will jump to if the branch is taken

What is the "byte offset 1- 0
-> The distance

,
in bytes ,

between the current branch instruction itself
,

and the target

target instruction" ? instruction .

-> The byte offset will always be a multiple of 4
,

which means that the last 2 bits

y the byte offset will always be 8
.

Because 0x0 ,
0

,8 , Gets all have 00 atthe end.

-We actually calculate the byte offset relative to the next instruction
,

e
.g . PC + &

.

How do you generate the value of 2. . Obtain the value of PC + 0-aka
,
the next inst . below the branch instruction

,
by

the immediate to encode a the PC is currently on the branch instruction. EX : beg $8$5 elself

branch instruction? 12 Compute the byte offset between PC + 1 and the PC &

PC + J & Ja
&arget instruction (the inst

.that we would branch to 34

· AKA
, (target addr) - (PC + 4) turget &

3-
Since each inst . are J addresses away from each other

,
the byte

How do we compute the branch I Offset is always a multiple of N
,
and its last 2 bits are O .

So we remove

30

the last 2 bits.

ANS = 0000000000000100
immediate = (target addr - <Pc + 1))2 remove these

target address given the immediate? - EX : The instruction Ox1532000L translates to :

opcode us rt immedia te

Dodidi Diodi 10010 8000 obou 0000 Dill

-> Assume the current PC = 0x0000301(

1-
Extract the immediate value : 00000000000000 01

2.
Sign-extend it to 30 bits :

Ob 00000000000000000000000000 0111

3 ·

Append 2 Os to the end of it : Ob 000000000000000000000000 000 1 1100

J - Add PC + & to it :
0x0000001C

+ 0x0000302C
↓ 0x0000000 y

The branch
address

target -> 0x0000303(

this syntax means

concatenate

&
Branch Target Addr = PC + N + 530-bit Sign-ext imm., 0b003

- Datap ath Support For Branching
-

How do we obtain the branch > RELA1 : to generate the branch target address :

target address ? -. Sign Extend the imm -
value to 30 bits

2

Append 2 OS

3.
Add it to PC + &

- We can achieve step 2 by left-shifting the 30-bit imm . by 2 !

How do we do this on the PC + J
Branch

datapath? 1 Targel

I Left

LextType = 1

2

-> The branch target addr .

= the value we should set PC to If we want to branch.

branch upon a branch inst .?
-> If not

, set pe = PC + &
,
like usual

-> We will need a mux to make this decision :

What do we do if we shouldn't I
Instruction 13: 0

- Extend
32 Shirt a i Addr

-

I F
BranchTargetador

How will we set the control signal ->

using a piece of logic that interprets the beg and bue branch instructions.

for the mux ?
-> This logic will output I to the Mux if we should branch

,and otherwise.

How do we support bege
- Using 2 new 1-bit control signals to indicate them :

bre on the datapath?
· beg : 1 if inst . is beg ,

O otherwise

· bre : 1 if inst
. is bre

,
O otherwise

-> beg $rs Prt Label : if Drs =rt
,
we want to branch.

-> be $rsry Label
: if $rs#$rt

,
we want to branch.

e SUMMARY : Output 1 to the Mux control Signal IF :

·

beg = 1 AND $rs = Prk UR

· bre = 1 And $r5 Art

How do we implement this logic? Using the Z-Flag/Zero Output of the ALU !!

· RECALL : The ALU has a 1-bit "Tero Output" that is set to 1 Whenever the ALU Output

is 0.

-1v,

We set the ALvOp to perform Subtraction
,
the 2-Flag will tell us

whether Irs = Dr+

· If $rs = $r+, ALU Output = $rs-$rt = 0 and Zero Output =

· IfArs # $r+, Alv Output = $rs-Srt # 0 and Tero-Output = 0

PC + J

beg >
Branch TargetAdda

2-Flag
Do &

How do we implement all of this

logic On the whole datapath?

-

- ·

Map it32

PC & Address
32

> Instruction I

Shi
beg >

D2
Do

25 :2

Memory I S Read

bre

Reada ! -
>

MemRead

MemtoReg

Instruction
bre ⑭

MemWrite

/Rey 1

20: 16
. /Read Read ReadoE

Rey 2

Reye
Data 2

·Ne more

L-> 0

Write

15 : 1/ Rey
Src

->
writa

&

Ar
write Data32

Data memory
15 : 0 megt ite

I
Extend 32

-Ex +Type

&
Uses deg & be control signals to determine whether we should jump
②Computes the branch target addr . Using the immediate

Jump Instructions

RECALL: What are jump · An instruction that tells the program to jump to an address (specified by the Label)

instructions? to continue execution.

-Label

· aka
, set PC to the address of Labe

How are jump instructions encoded In a new instruction format called j-format : Opcode = 000018

What is the problem?
-> We can only fit a 26-bit address in the instruction

,
but the PC needs a 32-bit address

.

How can we reduce the sizz of the -> We can shop offnot store the last 2 bits
,
since the last 2 bits of any instruction

address to 30 bits ? address are always O-due to word alignment :
0b0

0000 (0)

0b0
0100 18

: 198 h
How do we get rid of the last & -> By limiting the range of address values we can jump to Obo ...

11100 (201

extra bits ? -> When setting the PA field of a jump instruction
,
we will chop off the top d bits of the

target address .

in binary ?

I
3.

3)

opcode

2625

partial address (PA)

8

0x00003018

-> When constructingthe new PLaddr given the PA field of a jump instruction
,
we

will set the top & bits to be the top & bits of (PC +&).

Why do we do this ? ->

setting the topJ bits to be those of (PC + 1) gives us an address range that is nearby

to where we are currently located .

· To jump outside this range ,
we'd have to use a different instruction.

What is the JumpAddress given a JumpAddr = E(PC + 1)(31 : 28)
, partial ,

address
,
0b00 3

- -

binary j-instruction ?
bits 31 :28 of PC + &

bits 25 : 0 of j-inst

-> Ex
,
where the program begins at address 0x00003000 :

Address :

Given a
program with a jump inst

.

do we compute the binary Ox000030 op

0x0000 300 &

encoding of the partial address? 0x0000300

0x0000300C

:400003
·x0
0x0000302)

0x00003028

-
Determine the address we want to jump to :

· The address of the first inst
.

after the Label (0x00003010

2 .

Convert it to binary : Ob00000000 000 00 coll 00 od 000d

Remove top & bits & bottom 2 bits : 06000000000000 001100000001 00

AWS : 000010000000000000 001100000001 00

3) 2625 8

SUMMARY : Given a 32-bit jump
- EX : Instruction 0x08000300 , where PC= 0x01001000

instruction ,
how do we calculate

00 00 1000 00 00 00 00 00 00 00 11 00 00 00 00

Optode partial-address (PA)

We have to set PC to ?
2. Extract the partial address bits Ob 00000000000000 001100000000

↳
shift the value left by 3 Lin order to Ob 00 0000 0000 0000 doll 0000 0000 00

append 2 zeroes)

the jump address-aka ,
the address

I
3

31:28 J

32

3-
PL+= 0x0100100y

Concatenate the upper / bits of LPC ++
(PC + + / (31: 28) = 060000

AWS: jumpaddress = 0b0000 0000 0000 0000 0000 1100 0000 00 0

- Hardware Support for jump instructions -

How do we perform the process
2.

Use a splitter to extract the PA bits of the 32-bit instruction.

2-

described above
,
with our hardware? Use a shift logic unit to append 2 Os by left shifting by 2

Use a concatenate logic unit to concatenate the upper & bits of (PC + 1)

PC + J & &

Concatenate S Jump Address

25 : 0 Shift 28

Instruction * left S

2

How do we add this login on the Batapath
?
& Using a new 1-bit jump control signal

:

Shift

Left
2 concat

-
25 : 0 o

&

31:28

i

⑭ im
jump
6

control signal to

PC & Address indicate whether it
32

> Instruction / beg
is a jump instruction

,

Shift so we can sat new P
Left D addr accordingly2

Instruction
bre

MemWrite

25 :2
Read

-> MemtoReg

Memory

Read ! - Address Read. s
Data I

Rey 2 Reye L· Data 2· -> 0

Write

Rey Src
32

Write Data

Data memory
15 : 0 megt ite

in I Extendextype in
MemRead

What are all of the control Control Signal Value

signal values for a jump RegDsY X

instruction ? Jump &

beg X

bne X

MemRead O

MemtoReg X
&

These I should never be "don't care's

ALvOp XXXXX -
If we aren't writing to a reg ,

or

↑ reading or writing from MM
,

set these

MemWrite O
to 0

.

ALUSiC X

0
RegWrite

ExtType X

What are all of the control Control Signal Value

signal values for a beg RegDsY X

instruction? Jump O

1
beg

bne 8

MemRead O

MemtoReg X

ALvOp subtraction

MemWrite O

⑧ ~ Why ? Because we want to perform $rs-$rt
.

ALUSiC

0
RegWrite

p

ExtType

What is the range of addresses ~ For the given PC at the time of inst
,
we can jump to any address that has the same

we can jump to for a jump inst.? top & bits as current PC !

· Ex : If PL = 0x00700000, our range is 0x00000000 to OXOFFFFFFC (Not

OXOFFFFFFF bi of word alignment) .
That's a total of 65

,
273 , 855 addresses !

What is the range of addresses -> If PC = 6X00700000
, range is 0x00670008 to 0x00720000

we can jump to for a branch inst .?

Function Calls↓

What is the calling convention? -> Ascheme for how functions receive arguments & return values

-> Caller : A function that calls another function

-> Callee : A function called by another function

What is the protocol for callers -> Befare making the function call
,
the caller places the parameter args in registers

and callees? $ a0 - $a3(4 - 7)

-> When Fin ished
, the called places the return values in ragisters $10-$12(2-3)

How does the called know where
-> Return Address : the address of the inst . where the called will return

.

to return when it finishes execution?- When the caller calls the called , they place the ret . addr in a special register

($ ra = $31) so the called knows where to return .

So how does a caller actually
-> j sing the jump-and-link (JAL) instruction ! To jump to a function

.

call a function ? ->

Calling a function means 2 things on the 'hardware' side :

2. Setting PC to the address of the function being called

2-
Setting reg stra to the address we want the

program to resume executing

at after the function is over .

ax : jal Label

do ? -> Sets the PC to be the address of "Label" - aka the callee's label

- AND automatically sets register Bra to bethe return address.

·

return addr address of the inst . in main right after the JAL instruction

What does the JAL instruction I -> Synt

·

Where called places return values

How does the called re
-> Using the jump register instruction !turn

execution to the caller when its done? jr $a

Sel s the PC to be the address valvestored at $ra

Summary : What are some special Number Name Uses

registers and their uses ? $0 Szero-always holding the valve O

$ 1 Sat
·

Resolving pserdo instructions

$2 $ 18

·Where we place the "operation number" when performing syscall

·

Where the OS places value read from user in put after syscall

$3 $ v1 · Where called places return values

$j 5) a0 ·

Where caller places function parameter args
·

Where we place the value we want to print when performing syscall

$ S Daz"Where
caller places function parameter args# 6 3)

a 2
&
3

$ 1$a3

$31 $ ra
· stores return address upon a function call

Example program performing -> C program
: intsums(inta

,
intb

,
intc)

a function call ? return a + b + c;3

int main() S

inta = 2 ;

int b = 5 ;

intc = 8 ;

int
y = Sumb (a

,
b

,
c) ;

Printf ("YdIn"
, y) ;

-> Assembly program (MIPS) :

PC Address text

main :

OXU0003000 addi 5) a O $O 2 store inta
,
b

,
and c in the

0x00003008 addi $a2 $0S Y argument registers ab
,
al

,
a2

0x00003008 addi 5) a 2 $08

jump to Label Sum3 AND setGra

0x0000300c jal sum3 & to return instruction addr (PC+1) :

$ra = 0x00003018

0x00003010 addi $a0 $vO O & We know that the return value - is stored

in $r0 . Move it to $a0 ($0) so we can

printI J
PC= $ra = 0x00003010

0x0000301 y
addi $10 $8 1 ↑ Set $r0($2) to 1 to indicate"print

0x00003018 an integer from $1"
Syscall

OxU000301c addi $10 $0 10 ↑ set $2 to 10 for "exit program"

0x00003020 syscall NECESSARY bk Otherwise prog will keep

executing the stuff below

0x00003024 Sum3 :

0x00003028 add
add the values in all arg . registers

0x0000302a and
Sat 3 and store ans in $v0

0x00003030
jr ra s return to main; resume execution al

hiftInstrucS tions

What is the "shift left logical
"

- sll Brd Art Shamt

instruction ? · shift the contents of But to the LEFT by Shamt & store result in $rd

Why issll useful ? & For computing the byte offset when we need to index an array !

-> RECALL : Xy = X : 24

->

Given an array ,

if we want to access index b
,

we shift b left by ?

and add the result to our base address !

Example? · data

arr :Word 15 10 15 20

· text

addi $91$03 ~ we want arr (3]

la $5 arr
↑

stores address of arr 20] in $5

sil $at $a12 > $21 = 352 = 344 = 12
,
the byte offsetI

· RCrd] = R &rt] shamt

add $6$5 $a1 ~
stores addr of airCo) + 12 = addr of avr[33 in $6

In $70($6) · $7 = air 233 = 15

-> SWhat are the 2 right hift right logical : Sul Grd ut Shamt

shift instructions ↑ · Pad left side with OS

RCrd] = RErt] Shamb

-> Shift right arithmetic : Sard Art shamt

·Pad left side with MSB to preserve Sign

Storing Variables on the Stack

When is the register Bra not - When wehave nested function calls.

enough to help return from -> RECALL
:Dra is used to store the return address when a function call is made

usingjal .

Function calls?
-> EX :

Addre

.
data

hello: asciiz "Hello"

world : asciiz "world ! In"

·text

main :

O
jal print-helloWorld s 20 jump to print-helloWorld & set Bra =

J

jal print-hello PC + 1 = y

8 li$u010

12
syscall

print-helloWorld :

28 jal print-world - 10
jump to print-world & set Pra= Pc ++ = 2)

28
jr Bra -60 jump to address Ira = 21 ????I 16 jal print-hello

print

· 20 jump to print-

hello & Set $ra= PC ++ = 20

print-hello :

28 la $a0 hello

32 Isroa Sprin
36 syscal

-8 jr Gra 30 Finished / print-hello . Jump to addr. Bra

print-world: = 28

N la Da0 world

-8 li$v0 & S "WorldIn"

52
syscall &

so Finished w/ print-world . Jump to addr

56 jura Bra = 2)

What has happened in this -> At step 6
,

we are ready to return to main
,
as it was the one that called

example? print-hello World

· We expected ju $ra to take us to PC = 20

-> BUT
,

at this point Ira was overwritten
,
so we have lost the return address to main

and are stuck infinitely jumping to address 24 !!?

How can we fix this problem? -> By saving the ret .
addr

·
Somewhere else before we overwrite it. Saving it to another

register is not a sustainable solution bl it can still get overwritten.

-> Instead
,
we will store the RA on the stack

When would we save the RA-When the called begins ,
save the value of Bra to the stack

on the stack ? -> When the callee is ready to return , get the val . From the stacka place it

back into &)ra
,
before the ju pra instruction

.

print-helloWorld :

#Save Bra=20 on stack

jal print-hells

restore ra=20 From Stack

ju sta

-> Now
, step 6 (Form EX On prevpage) will take us back to main by setting PC = 20 !

- The stack pointer -

RECALL : What is the stack? -> An areauf memory used to store temporary function data
,

such as local variables-

- The Stack grows DOWN (high-low mem - addresses

What is the stack pointer ?
BSp"

stack
-> A special register $Sp (which is actually $29) ↓

↑
that is used to point to the last item that was Heap (DynamicData)

placed on the stack Static DataI A

placed val on the stack .

jal print-world

0x0000 1030

Text5) sp holds the address of the must recently
Reserved

How do we store a new itemon -> the stack grows down
,
so we must decrement the addr value stored in $Sp

the stack ? by I to move to a new spot on the stack .

Example ? ↑ Current Stack : $sp= 0x0000103 + Address Data

and pointsto the last val added
,
12 . $Sp (0x00001031 12

· To store a new item
,
the value ofIra :

28 0x0000102c
Decrement sp by J

20 store value in memory 0x0000 1028

addi $sp $sp - - 0x0000 102 y

su $ra0($sp) Address Data

②
Updated stack : 0x0000103y 12

$) Sp 90x00001030 0x0000300d

0x0000102c

0x0000 1028

0x0000 102 y

How do we remove an item from -> "Remove
"

aka to Fetch back the value we stored

the stack ? ->When we wantto restore a val from the stack ,
we simply

2 o

read it into a register (with IW)

and then more the stack pointer back up

-> We don't have to "clear" the value from memory ; by moving spback up,

We've "unallocated" that stack space .
Bl next time we want to store on

↓he stack
,

we will just overwrite this value .

Example? ->
↑

Current stack : $5p = 0 +00001030 Address Data

-> Read/"remove"/restore value of ra: 0x0000103y 12

$) Sp 90x00001030 0x0000300d
In $ra0($sp)

0x0000102c
addi $5p $spy

0x0000 1028

->
O

updated stack : Address
Dat0000 10 24

$) Sp (0x00001031 12

0x00001030 0x0000300d

0x0000102c

0x0000 1028

0x0000 102 y

-

Calling Convention with function - saved values-

RECALL: Why do we have a
-> Imagine each function in a program was written by a different person ,

& theyI
2 .

and $52!

[

Fun :

calling convention ? didn't know how the other person wrote their func
,
or what registers they used.

-> Then
,
we can't necessarily rely on a val

. Saved in a reg. to not be overwritten
,

so we

must have rules /conventions for preservingall parts of the program (for ex
, param

args in $a0-$93 & return values in $10-$r](

What is another example of -> If a called overwrites caller-saved values ! EX : Main :

when we might need to save values addi $51 50 0

to the stack ? la $52 array - 1

la $53 array - 2

In $900($52)

fun overwrites jal fun

in $51
the values

addi $51 $a01

sub $52$0$98

mul $v0$51$52

ju Bra

How can we fix this problem ? -> By having the called save the values in the caller-saved registers to the

stack before overwriting them.

->Then
, before returning to caller

,
the called restores the values fromthe stack !

Example of the Fix ? -The called "fun" :

Fun : allocate space to store 2 reg-valves on the stack

addi $sp $Sp -8 by decrementing $sp by 8.

Sw $52 ↓ ($5p) <Store contents of $52 at addr [spaddr + 1]

sw $510($Sp) > Store contents Of $51 at addr [spaddr]

addi $51 $90 1

&->
Now

,
called can use registers $51 and $52 wo

Sub $52$0 $a0 worrying

mul $v0$31$s2

· Before returning to the caller
,

restore the values of

Iw $510($sp)

I
& 31 and $52 by reading from the stack

In $52 N($sp)

addi $sp $Sp8 & more sp back up to "deallocate"

jr Bra

What is a caller saved register
->

Registers that the caller uses , BUT expects that the called may overwrite

in the calling convention? them .

· The calle CAN overwrite these registers wo saving them

- If caller intendsto use them after a Func
.

Call
,
it is the caller's responsibility

to save them.

What are called saved registers? ->

Registers that the caller expects the called to NOT overwrite - caller expects

the vals in these registers to be saved.

- If the called wants to use these registers ,
it is the callee's responsibility

to save their values to the stack and then later restorethem .

What are the designated caller - Registers Name Use Type

and callee-saved registers in MIPS? $2 - 3 &vO-$V2 calle stores return valves caller-saved

9y -4 $a0-say caller stores param - args caller-saved

$8 - 15 $ + 0 - $ +7
registers for calle to use caller-saved

5 16 - 23 $50 - $37 registers for caller to use Callee-saved

5) 20-25 $78-$79 registers For callecouse caller-saved

$31 $ ra
return address pointer caller-saved

9
Ifthe caller is ALSO a called

, they are responsible for saving their own RA before calling another fune.

